Skip to main content
  • Other Publications
    • Philosophical Transactions B
    • Proceedings B
    • Biology Letters
    • Open Biology
    • Philosophical Transactions A
    • Proceedings A
    • Royal Society Open Science
    • Interface
    • Interface Focus
    • Notes and Records
    • Biographical Memoirs

Advanced

  • Home
  • Content
    • Latest issue
    • All content
    • Subject collections
    • Special features
    • Videos
  • Information for
    • Authors
    • Reviewers
    • Readers
    • Institutions
  • About us
    • About the journal
    • Editorial board
    • Author benefits
    • Policies
    • Citation metrics
    • Publication times
    • Open access
  • Sign up
    • Subscribe
    • eTOC alerts
    • Keyword alerts
    • RSS feeds
    • Newsletters
    • Request a free trial
  • Submit
You have accessRestricted access

Model for the retino-tectal projection

A. Gierer
Published 22 April 1983.DOI: 10.1098/rspb.1983.0027
A Gierer
Max-Planck-Institut für Virusforschung, 7400 Tübingen, F. R. G.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A model for the retino-tectal projection is proposed which assumes that axonal growth proceeds predominantly in the direction of maximal slope of a guiding substance (or, more generally, of a system parameter subsuming the effect of several substances). The spatial distribution of this parameter, in turn, results from the interaction of components of retinal axons (which are graded with respect to position of origin in the retina) and tectal components. One or two gradients in each dimension of retina and tectum suffice. Conditions for the generation of a reliable projection on this basis are relatively simple and consistent with conventional enzyme and receptor kinetics. Adhesive forces could but need not be involed in the guiding mechanism. The slope of guiding substances that interfere with an intracellular pattern-forming mechanism within the growth cone may determine the polarity of activation and thus the direction of growth. Generation of primary projections and some features of regulation such as independence of projections on neural pathways, and observations on the innervation of rotated pieces of tectum, can be explained on the basis of the model. The model can be extended by introducing additional production of guiding substance depending on the density, and duration of presence, of fibre terminals in the course of innervation. This simple mechanism would suffice for observed effects of compression and expansion of the map following ablation of retinal and tectal tissue, respectively. It may but need not be involved in the primary projection, too.

Footnotes

  • This text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR.

  • Received October 28, 1982.
  • Scanned images copyright © 2017, Royal Society

Royal Society Login

Sign in for Fellows of the Royal Society

Fellows: please access the online journals via the Fellows’ Room

Not a subscriber? Request a free trial

Log in using your username and password

Enter your Proceedings of the Royal Society of London B: Biological Sciences username.
Enter the password that accompanies your username.
Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.

Pay Per Article - You may access this article or this issue (from the computer you are currently using) for 30 days.

Regain Access - You can regain access to a recent Pay per Article or Pay per Issue purchase if your access period has not yet expired.

PreviousNext
Back to top
PreviousNext
22 April 1983
Volume 218, issue 1210
  • Table of Contents
  • Index by author
  • Advertising (PDF)
  • Back Matter (PDF)
Share
Model for the retino-tectal projection
A. Gierer
Proc. R. Soc. Lond. B 1983 218 77-93; DOI: 10.1098/rspb.1983.0027. Published 22 April 1983
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Email

Thank you for your interest in spreading the word on Proceedings of the Royal Society of London B: Biological Sciences.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Model for the retino-tectal projection
(Your Name) has sent you a message from Proceedings of the Royal Society of London B: Biological Sciences
(Your Name) thought you would like to see the Proceedings of the Royal Society of London B: Biological Sciences web site.
Print
Manage alerts

Please log in to add an alert for this article.

Sign In to Email Alerts with your Email Address
Citation tools

Model for the retino-tectal projection

A. Gierer
Proc. R. Soc. Lond. B 1983 218 77-93; DOI: 10.1098/rspb.1983.0027. Published 22 April 1983

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Article reuse

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related articles

Cited by

Large datasets are available through Proceedings B's partnership with Dryad

Open biology

  • PROCEEDINGS B
    • About this journal
    • Contact information
    • Purchasing information
    • Submit
    • Author benefits
    • Open access membership
    • Recommend to your library
    • FAQ
    • Help

Royal society publishing

  • ROYAL SOCIETY PUBLISHING
    • Our journals
    • Open access
    • Publishing policies
    • Conferences
    • Podcasts
    • News
    • Blog
    • Manage your account
    • Terms & conditions
    • Cookies

The royal society

  • THE ROYAL SOCIETY
    • About us
    • Contact us
    • Fellows
    • Events
    • Grants, schemes & awards
    • Topics & policy
    • Collections
    • Venue hire

Copyright © 2018 The Royal Society