We present a simple model for the spatial spread of rabies among foxes and use it to quantify its progress in England if rabies were introduced. The model is based on the known ecology of fox behaviour and on the assumption that the main vector for the spread of the disease is the rabid fox. Known data and facts are used to determine real parameter values involved in the model. We calculate the speed of propagation of the epizootic front, the threshold for the existence of an epidemic, the period and distance apart of the subsequent cyclical epidemics which follow the main front, and finally we quantify a means for control of the spatial spread of the disease. By way of illustration we use the model to determine the progress of rabies up through the southern part of England if it were introduced near Southampton. Estimates for the current fox density in England were used in the simulations. These suggest that the disease would reach Manchester within about 3.5 years, moving at speeds as high as 100 km per year in the central region. The model further indicates that although it might seem that the disease had disappeared after the wave had passed it would reappear in the south of England after just over 6 years and at periodic times after that. We consider the possibility of stopping the spread of the disease by creating a rabies `break' ahead of the front through vaccination to reduce the population to a level below the threshold for an epidemic to exist. Based on parameter values relevant to England, we estimate its minimum width to be about 15 km. The model suggests that vaccination has considerable advantages over severe culling.

Royal Society Login

Log in through your institution