Steps in the Development of Chemical and Electrical Synapses by Pairs of Identified Leech Neurons in Culture

Y. Liu, J. Nicholls


Experiments have been made to follow the development of chemical and electrical transmission between pairs of leech neurons in culture. 1 The cell bodies of identified neurons were isolated from the CNS by suction after mild enzyme treatment. together with a length of the initial segment (or `stump'). The neurons tested were Retzius cells (R), annulus erector motoneurons (AE). Anterior pagoda cells (AP) and pressure sensory cells (P). Pairs of cells were placed together in various configurations. with different sites on their surfaces making contact. 2. When pairs of Retzius cells were apposed with their stumps touching, serotonergic, chemically mediated synaptic transmission became apparent before electrical transmission. By 2.5 h impulses in either of the two Retzius cells produced hyperpolarizing inhibitory potentials in the other These potentials were reversed by raised intracellular Cl and showed clear facilitation. The strength of chemical transmission between Retzius cells increased over the next 72 h. 3. After chemical transmission had been established, weak non-rectifying electrical transmission became apparent between Retzius cells at about 24-72 h. By 4 days coupling became stronger and tended to obscure chemically evoked synaptic potentials. 4. When pairs of Retzius cells were aligned in culture with the tip of one cell stump touching the soma of the other, chemical transmission also developed rapidly Transmission was, however, in one direction, from stump to soma. At later stages non-rectifying electrical coupling developed as with stump-stump configuration. With the cell bodies of two Retzius cells apposed, electrical coupling developed after several days, before chemical transmission could be observed. 5. When Retzius and P cells were cultured with their stumps in contact, inhibitory chemical synaptic transmission developed within 24 h. Transmission was always in one direction, from Retzius to P cell. Electrical coupling of Retzius and P cells never occurred whatever the spatial relations of the cells to one another 6. Annulus erector motoneurons, which contain ACh and a peptide resembling FMRFamide, first developed electrical coupling when the two stumps were in contact and then, later, bi-directional chemical transmission. Anterior Pagoda pairs placed stump-to-stump showed electrical connections. 7 Electronmicrographs revealed the presence of synaptic structures within 24 h after Retzius-Retzius, Retzius-P or AE-AE stumps were apposed. 8. The specificity of connections between cultured cells was similar to that observed in earlier experiments. A marked difference was in the speed and reliability with which chemical synapses developed when stumps were in contact. The results show that the tip of a neuron represents a preferential site for the formation of chemical synapses.

Royal Society Login

Log in through your institution