Royal Society Publishing

Corridors maintain species richness in the fragmented landscapes of a microecosystem

Francis Gilbert, Andrew Gonzalez, Isabel Evans-Freke


Theory predicts that species richness or single–species populations can be maintained, or at least extinctions minimized, by boosting rates of immigration. One possible way of achieving this is by establishing corridors of suitable habitat between reserves. Using moss patches as model microecosystems, we provide here probably the first field experimental test of the idea that corridors can reduce the rate of loss of species, and therefore help to maintain species richness. Connecting patches of habitat with corridors did indeed slow the rate of extinction of species, preserving species richness for longer periods of time than in disconnected habitat patches. The pattern of γ–diversity, the cumulative species richness of entire connected systems, is similarly higher than that of fragmented systems, despite the homogenizing effects of movement. Predators are predicted to be more susceptible to fragmentation because of their greater mobility and smaller population sizes. Our data are consistent with this prediction: the proportion of predator species declined significantly in disconnected as compared with connected treatments.