Spatial working memory in rats: no differences between the sexes

Susan D Healy, Susanna R Braham, Victoria A Braithwaite

Abstract

In a number of mammalian species, males appear to have superior spatial abilities to females. The favoured explanations for this cognitive difference are hormonal, with higher testosterone levels in males than females leading to better spatial performance, and evolutionary, where sexual selection has favoured males with increased spatial abilities for either better navigational skills in hunting or to enable an increased territory size. However, an alternative explanation for this sex difference focuses on the role of varying levels of oestrogen in females in spatial cognition (the ‘fertility and parental care’ hypothesis). One possibility is that varying oestrogen levels result in variation in spatial learning and memory so that, when tested across the oestrous cycle, females perform as well as males on days of low oestrogen but more poorly on days of high oestrogen. If day in the oestrous cycle is not taken into account then, across an experiment, any sex differences found would always produce male superiority. We used a spatial working memory task in a Morris water maze to test the spatial learning and memory abilities of male and female rats. The rats were tested across a number of consecutive days during which the females went through four oestrous cycles. We found no overall sex differences in latencies to reach a submerged platform in a Morris water maze but, on the day of oestrus (low oestrogen), females took an extra swim to learn the platform's location (a 100% increase over the other days in the cycle). Female swim speed also varied across the oestrous cycle but females were no less active on the day of oestrus. These results oppose the predictions of the fertility and parental care hypothesis.

Royal Society Login

Log in through your institution