Royal Society Publishing

Evolution of complex fruiting–body morphologies in homobasidiomycetes

David S. Hibbett, Manfred Binder


The fruiting bodies of homobasidiomycetes include some of the most complex forms that have evolved in the fungi, such as gilled mushrooms, bracket fungi and puffballs (‘pileate–erect’) forms. Homobasidiomycetes also include relatively simple crust–like ‘resupinate‘ forms, however, which account for ca. 13–15% of the described species in the group. Resupinate homobasidiomycetes have been interpreted either as a paraphyletic grade of plesiomorphic forms or a polyphyletic assemblage of reduced forms. The former view suggests that morphological evolution in homobasidiomycetes has been marked by independent elaboration in many clades, whereas the latter view suggests that parallel simplification has been a common mode of evolution. To infer patterns of morphological evolution in homobasidiomycetes, we constructed phylogenetic trees from a dataset of 481 species and performed ancestral state reconstruction (ASR) using parsimony and maximum likelihood (ML) methods. ASR with both parsimony and ML implies that the ancestor of the homobasidiomycetes was resupinate, and that there have been multiple gains and losses of complex forms in the homobasidiomycetes. We also used ML to address whether there is an asymmetry in the rate of transformations between simple and complex forms. Models of morphological evolution inferred with ML indicate that the rate of transformations from simple to complex forms is about three to six times greater than the rate of transformations in the reverse direction. A null model of morphological evolution, in which there is no asymmetry in transformation rates, was rejected. These results suggest that there is a ‘driven’ trend towards the evolution of complex forms in homobasidiomycetes.

Royal Society Login

Log in through your institution