Major adaptive radiation in neritopsine gastropods estimated from 28S rRNA sequences and fossil records

Yasunori Kano, Satoshi Chiba, Tomoki Kase

Abstract

A well–supported phylogeny of the Neritopsina, a gastropod superorder archaic in origin, radiated ecologically and diverse in morphology, is reconstructed based on partial 28S rRNA sequences. The result (Neritopsidae (Hydrocenidae (Helicinidae + Neritiliidae) (Neritidae + Phenacolepadidae))) is highly congruent with the fossil records and the character distribution of reproductive tracts in extant taxa. We suggest that the Neritopsina originated in subtidal shallow waters, invaded the land and became fully terrestrial at least three times in different clades, by the extinct Dawsonellidae in the Late Palaeozoic and by the Helicinidae and Hydrocenidae in the Mesozoic. Invasion of fresh– and brackish waters is prevalent among the Neritopsina as the Jurassic and freshwater ancestory is most probable for helicinids. The Phenacolepadidae, a group exclusively inhabiting dysoxic environments, colonized deep–sea hydrothermal vents and seeps in the Late Cretaceous or Early Cenozoic. Submarine caves have served as refuges for the archaic Neritopsidae since the Early to Middle Cenozoic, and the marine neritopsine slug Titiscania represents a highly specialized but relatively recent offshoot of this family. The Neritiliidae is another clade to be found utilizing submarine caves as shelter by the Oligocene; once adapted to the completely dark environment, but some neritiliids have immigrated to surface freshwater habitats.

Royal Society Login

List of OpenAthens registered sites, including contact details.