Top–down population regulation of a top predator: lions in the Ngorongoro Crater

Bernard M. Kissui, Craig Packer

Abstract

Efforts to determine whether bottom–up or top–down processes regulate populations have been hampered by difficulties in accurately estimating the population's carrying capacity and in directly measuring food intake rate, the impacts of interspecific competition and exposure to natural enemies. We report on 40 years of data on the lion population in Ngorongoro Crater, Tanzania, which showed strong evidence of density–dependent regulation at 100–120 individuals but has remained below 60 individuals for the past decade despite consistently high prey abundance. The lions enjoy a higher per capita food–intake rate and higher cub recruitment at low population density, and interspecific competition has not increased in recent years. These animals have suffered from a number of severe disease outbreaks over the past 40 years, but, whereas the population recovered exponentially from a severe epizootic in 1963, three outbreaks between 1994 and 2001 have occurred in such rapid succession that the population has been unable to return to the carrying capacity. The Crater population may have become unusually vulnerable to infectious disease in recent years owing to its close proximity to a growing human population and a history of close inbreeding. The Crater lions may therefore provide important insights into the future of many endangered populations.