Abstract
‘Devil's gardens’ are nearly pure stands of the myrmecophyte, Duroia hirsuta, that occur in Amazonian rainforests. Devil's gardens are created by Myrmelachista schumanni ants, which nest in D. hirsuta trees and kill other plants using formic acid as an herbicide. Here, we show that this ant–plant mutualism has an associated cost; by making devil's gardens, M. schumanni increases herbivory on D. hirsuta. We measured standing leaf herbivory on D. hirsuta trees and found that they sustain higher herbivory inside than outside devil's gardens. We also measured the rate of herbivory on nursery-grown D. hirsuta saplings planted inside and outside devil's gardens in ant-exclusion and control treatments. We found that when we excluded ants, herbivory on D. hirsuta was higher inside than outside devil's gardens. These results suggest that devil's gardens are a concentrated resource for herbivores. Myrmelachista schumanni workers defend D. hirsuta against herbivores, but do not fully counterbalance the high herbivore pressure in devil's gardens. We suggest that high herbivory may limit the spread of devil's gardens, possibly explaining why devil's gardens do not overrun Amazonian rainforests.
Footnotes
- Received December 17, 2006.
- Accepted January 18, 2007.
- © 2007 The Royal Society
Sign in for Fellows of the Royal Society
Fellows: please access the online journals via the Fellows’ Room
Not a subscriber? Request a free trial
Log in using your username and password
Log in through your institution
Pay Per Article - You may access this article or this issue (from the computer you are currently using) for 30 days.
Regain Access - You can regain access to a recent Pay per Article or Pay per Issue purchase if your access period has not yet expired.