Cubozoa (Cnidaria: Medusozoa) represents a small clade of approximately 50 described species, some of which cause serious human envenomations. Our understanding of the evolutionary history of Cubozoa has been limited by the lack of a sound phylogenetic hypothesis for the group. Here, we present a comprehensive cubozoan phylogeny based on ribosomal genes coding for near-complete nuclear 18S (small subunit) and 28S (large subunit) and partial mitochondrial 16S. We discuss the implications of this phylogeny for our understanding of cubozoan venom evolution, biogeography and life-history evolution. Our phylogenetic hypothesis suggests that: (i) the last common ancestor of Carybdeida probably possessed the mechanism(s) underlying Irukandji syndrome, (ii) deep divergences between Atlantic and Indo-Pacific clades may be explained by ancient vicariant events, and (iii) sexual dimorphism evolved a single time in concert with complex sexual behaviour. Furthermore, several cubozoan taxa are either para- or polyphyletic, and we address some of these taxonomic issues by designating a new family, Carukiidae, a new genus, Copula, and by redefining the families Tamoyidae and Tripedaliidae. Lastly, cubozoan species identities have long been misunderstood and the data presented here support many of the recent scientific descriptions of cubozoan species. However, the results of a phylogeographic analysis of Alatina moseri from Hawai'i and Alatina mordens from Australia indicate that these two nominal species represent a single species that has maintained metapopulation cohesion by natural or anthropogenic dispersal.


  • 1 The name C. brevipedalia is not in widespread usage, but its original description and type locality (Kishinouye 1891) demonstrate that it is the senior synonym of the name C. mora Kishinoye, 1910, recently used as valid in Gershwin (2006b) and Gershwin & Gibbons (2009).

    • Received September 22, 2009.
    • Accepted October 26, 2009.
View Full Text