Evolutionary distinctiveness of the extinct Yunnan box turtle (Cuora yunnanensis) revealed by DNA from an old museum specimen

James F. Parham1,2, Bryan L. Stuart3,4, Roger Bour5 and Uwe Fritz6

1Evolutionary Genomics Department, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
2Department of Paleontology, University of California, Berkeley, CA 94720, USA (parham@jgi.doe.gov)
3The Field Museum, Department of Zoology, Division of Amphibians and Reptiles, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA (bstuart@fieldmuseum.org)
4University of Illinois at Chicago, Department of Biological Sciences (MC/C66), 845 West Taylor, Chicago, IL 60607-7060, USA (jfparham@uic.edu)
5Laboratoire des Reptiles et Amphibiens, Département Systématique et Evolution, Muséum National d’Histoire Naturelle, 25 rue Cuvier, 75005 Paris, France (bour@mnHN.fr)
6Museum für Tierkunde, Staatliche Naturhistorische Sammlungen Dresden, A.-B.-Meyer-Bau, Königsbrücker Landstrasse 159, D-01109 Dresden, Germany (uwe.fritz@smnh.sachsen.de)

Author for correspondence: bstuart@fieldmuseum.org

Accptd 17.05.04; Published online 20.07.04

Cuora yunnanensis is an extinct turtle known from 12 specimens collected from Yunnan, China, before 1908. We used ancient DNA methods to sequence 1723 base pairs of mitochondrial DNA from a museum specimen of C. yunnanensis. Unlike some rare ‘species’ recently described from the pet trade, C. yunnanensis represents a lineage that is distinct from other known turtles. Besides C. yunnanensis, two other valid species (C. mccordi, C. zhouti) are unknown in the wild but are supposedly from Yunnan. Intensive field surveys for surviving wild populations of these critically endangered species are urgently needed.

Keywords: Cuora yunnanensis; ancient DNA; extinction; endangered species; China; turtle

1. INTRODUCTION

Asia’s turtle fauna is highly threatened by over-harvesting for food, medicine and the international pet trade (van Dijk et al. 2000). Included in this threatened fauna is a suite of species known only by specimens obtained from Asian food markets, turtle farms and pet dealers: for example, Cuora mccordi, C. serrata, C. zhouti, Mauremys iversoni, M. pritchardi, Ocadia philippini, O. glyphistoma and O. pseudocellata (Fritz & Obst 1998, 1999; Parham et al. 2001); or by very few specimens in the wild, for example, C. pearii, Heosemys depressa, H. leyensis and Leucocephalon yuonoi (Fritz & Obst 1998, 1999; Parham & Li 1999; Platt et al. 2001, 2003a; Diesmos et al. 2004).

Recent molecular studies have revealed that some of Asia’s poorly known turtles represent hybrids of better-known species (Parham et al. 2001; Wink et al. 2001; Spinks et al. 2004), some share mitochondrial DNA (mtDNA) haplotypes suggesting introgression or recent divergences (Barth et al. 2003; Stuart & Parham 2004), and some represent ancient, independently evolving lineages (McCord et al. 2000; Barth et al. 2004; Spinks et al. 2004; Stuart & Parham 2004). At the same time, recent field efforts have located new populations of highly threatened Asian turtle species in the wild (Platt et al. 2001, 2003a-c, Diesmos et al. 2004). Clearly, molecular studies can play an important role in conservation policy by identifying distinct evolutionary lineages of turtles, and directing limited conservation resources towards finding and protecting these in the wild (van Dijk 2000; Parham et al. 2001).

One of Asia’s least known turtle species, the Yunnan box turtle, Cuora yunnanensis (Boulenger 1906), is known from just 12 museum specimens. These were either purchased from natural history specimen dealers who obtained them from Yunnan, southern China, before 1908, or have no associated data (see electronic Appendix A). Cuora yunnanensis is now listed as extinct in the 2003 IUCN Red List of Threatened Species (IUCN 2003), meaning ‘there is no reasonable doubt that the last individual has died’.

The species was listed as extinct owing to a complete lack of verifiable records since those 12 specimens were collected (despite very high levels of turtle trade in Yunnan), and because one of its two known sites of occurrence has disappeared under the expanding city of Kunming (Zhao 1998; Lau & Shi 2000; IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and Asian Turtle Trade Working Group 2000; IUCN 2003).

The circumstances of the description of C. yunnanensis (purchased specimens and no field observations) resemble those of other recently described rare species that are probably hybrids of better-known species, including those currently classified in different genera (Parham et al. 2001; Wink et al. 2001; Spinks et al. 2004). These putative hybrid taxa are diagnosed by characters that are usually restricted to the parental species. The distinctly mottled neck of C. yunnanensis is also found in Chinemys reevesii, a species native to Yunnan (Zhao & Adler 1993) that is commonly reared in Chinese turtle farms and has been implicated in at least three other hybridizations, including one with a Cuora (Yasukawa et al. 1992; Wink et al. 2001; Galgon & Fritz 2002). If C. yunnanensis was a hybrid of Ch. reevesii and a species of Cuora, C. yunnanensis would share a mtDNA haplotype with the maternal species. However, the evolutionary distinctiveness of C. yunnanensis has not been tested by using molecular data because of a lack of fresh tissue samples.

We surmounted this problem by using ancient DNA methods to sequence 1723 base pairs of mtDNA from a 1907 specimen of C. yunnanensis held in the Muséum National d’Histoire Naturelle in Paris (MNHN 1907.10). We present the first, to our knowledge, molecular phylogenies of these critically endangered species are urgently needed.

Keywords: Cuora yunnanensis; ancient DNA; extinction; endangered species; China; turtle

1. INTRODUCTION

Asia’s turtle fauna is highly threatened by over-harvesting for food, medicine and the international pet trade (van Dijk et al. 2000). Included in this threatened fauna is a suite of species known only by specimens obtained from Asian food markets, turtle farms and pet dealers: for example, Cuora mccordi, C. serrata, C. zhouti, Mauremys iversoni, M. pritchardi, Ocadia philippini, O. glyphistoma and O. pseudocellata (Fritz & Obst 1998, 1999; Parham et al. 2001); or by very few specimens in the wild, for example, C. pearii, Heosemys depressa, H. leyensis and Leucocephalon yuonoi (Fritz & Obst 1998, 1999; Parham & Li 1999; Platt et al. 2001, 2003a; Diesmos et al. 2004).

Recent molecular studies have revealed that some of Asia’s poorly known turtles represent hybrids of better-known species (Parham et al. 2001; Wink et al. 2001; Spinks et al. 2004), some share mitochondrial DNA (mtDNA) haplotypes suggesting introgression or recent divergences (Barth et al. 2003; Stuart & Parham 2004), and some represent ancient, independently evolving lineages (McCord et al. 2000; Barth et al. 2004; Spinks et al. 2004; Stuart & Parham 2004). At the same time, recent field efforts have located new populations of highly threatened Asian turtle species in the wild (Platt et al. 2001, 2003a-c, Diesmos et al. 2004). Clearly, molecular studies can play an important role in conservation policy by identifying distinct evolutionary lineages of turtles, and directing limited conservation resources towards finding and protecting these in the wild (van Dijk 2000; Parham et al. 2001).

One of Asia’s least known turtle species, the Yunnan box turtle, Cuora yunnanensis (Boulenger 1906), is known from just 12 museum specimens. These were either purchased from natural history specimen dealers who obtained them from Yunnan, southern China, before 1908, or have no associated data (see electronic Appendix A). Cuora yunnanensis is now listed as extinct in the 2003 IUCN Red List of Threatened Species (IUCN 2003), meaning ‘there is no reasonable doubt that the last individual has died’.

The species was listed as extinct owing to a complete lack of verifiable records since those 12 specimens were collected (despite very high levels of turtle trade in Yunnan), and because one of its two known sites of occurrence has disappeared under the expanding city of Kunming (Zhao 1998; Lau & Shi 2000; IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and Asian Turtle Trade Working Group 2000; IUCN 2003).

The circumstances of the description of C. yunnanensis (purchased specimens and no field observations) resemble those of other recently described rare species that are probably hybrids of better-known species, including those currently classified in different genera (Parham et al. 2001; Wink et al. 2001; Spinks et al. 2004). These putative hybrid taxa are diagnosed by characters that are usually restricted to the parental species. The distinctly mottled neck of C. yunnanensis is also found in Chinemys reevesii, a species native to Yunnan (Zhao & Adler 1993) that is commonly reared in Chinese turtle farms and has been implicated in at least three other hybridizations, including one with a Cuora (Yasukawa et al. 1992; Wink et al. 2001; Galgon & Fritz 2002). If C. yunnanensis was a hybrid of Ch. reevesii and a species of Cuora, C. yunnanensis would share a mtDNA haplotype with the maternal species. However, the evolutionary distinctiveness of C. yunnanensis has not been tested by using molecular data because of a lack of fresh tissue samples.

We surmounted this problem by using ancient DNA methods to sequence 1723 base pairs of mtDNA from a 1907 specimen of C. yunnanensis held in the Muséum National d’Histoire Naturelle in Paris (MNHN 1907.10). We present the first, to our knowledge, molecular phylogenetic analysis of the genus Cuora with complete taxon sampling. We use these molecular data to evaluate the evolutionary distinctiveness of C. yunnanensis and two other species of Cuora, reportedly from Yunnan, that are
Figure 1. (a) The Yunnan box turtle, *Cuora yunnanensis*, specimen (MNHN 1907.10) sequenced in this study showing the diagnostic head stripes and mottled neck. (b) Map showing the region of Yunnan, China, where poorly known box turtles were reportedly collected. (c)(i) Reported localities for *C. yunnanensis*. (ii) Localities where *Cuora zhoui* specimens were reportedly purchased. (iii) Type locality for *Cuora mccordi*. Lines show that the actual locality may be further to the west according to McCord & Iverson (1991). (d) One of two equally most parsimonious trees obtained from maximum-parsimony analysis, and the single tree obtained from maximum-likelihood analysis, of an alignment containing 1790 bp of mtDNA. In the alternative equally most parsimonious tree, *C. mouhotii* is sister to *C. amboinensis*. Trees were rooted with *Chinemys reevesii*, *Ch. nigricans*, and *Mauremys mutica*. Numbers to the left of nodes are decay indices, and to the right of nodes are parsimony non-parametric bootstrap values. See electronic Appendix A for details of analysis. The reported localities of species (i), (ii) and (iii) are illustrated in (c).
critically endangered but which have not been documented in the wild (C. mccordi and C. zhoui).

2. MATERIAL AND METHODS

We sequenced an 831 bp piece of mtDNA that encodes part of the cytochrome oxidase subunit 1 (COI) gene and an 892 bp piece of mtDNA that encodes part of the NADH dehydrogenase subunit 4 (ND4) gene, the complete tRNAs histidine (His) and serine (Ser), and part of the tRNA leucine (Leu) from a specimen of C. yunnanensis (MNHN 1907.10; figure 1) that was recently identified in the Museum of National d'Histoire Naturelle in Paris (see electronic Appendix A for the history of the specimen). We also sequenced these mtDNA fragments from three specimens of C. zhoui, the only other Cuora species missing from the Stuart & Parham (2004) dataset, and one additional specimen each of C. aurocapitata, C. flavomarginata, C. mccordi and C. pani. (See electronic Appendix A for voucher information, GenBank accession numbers, sequencing protocols and methods of phylogenetic analyses.)

3. RESULTS

 Parsimony and maximum-likelihood analyses recover the same hypothesis of phylogenetic relationships for Cuora (figure 1), except that one of the two equally most-parsimonious trees places Cuora (figure 1), except that one of the two equally most-parsimonious trees places Cuora species missing from the Stuart & Parham (2004) dataset, and one additional specimen each of C. aurocapitata, C. flavomarginata, C. mccordi and C. pani. (See electronic Appendix A for voucher information, GenBank accession numbers, sequencing protocols and methods of phylogenetic analyses.)

4. DISCUSSION

The divergent mtDNA sequence obtained from the museum specimen implies that C. yunnanensis is not of recent hybrid origin, but rather represents a distinct evolutionary lineage. We included at least two individuals of every species of Cuora in our analysis, but we cannot rule out the possibility that C. yunnanensis matches a haplotype in an unknown distinct lineage that will be discovered by future sampling within the clade containing C. flavomarginata, C. zhoui, C. aurocapitata, C. pani and C. trifasciata.

China has the highest species richness, highest endemism and most threatened turtle fauna of any country in Asia (Stuart & Thorbjarnarson 2003), and C. yunnanensis represents the first recent documented loss to that fauna. The natural habitat of the high elevation (more than 2000 m) wetland ‘Yunnan-Fu,’ the type locality of C. yunnanensis and the extinct Kunming newt, Cynops volwerti (Bouleguer 1903; figure 1), has been destroyed by the expanding city of Kunming (Zhao 1998). The second locality for C. yunnanensis given by Bouleguer (1906), ‘Tongchuan-Fu’ (= Dongchuan; figure 1), lies ca. 100 km north of Kunming. Lau & Shi (2000) reported that a suitable habitat for C. yunnanensis may still exist there, but no specimens have been found.

Two other species of Cuora, reportedly from Yunnan, C. mccordi and C. zhoui, also represent distinct lineages of Cuora (figure 1). Both are listed as critically endangered in the 2003 IUCN Red List of Threatened Species (IUCN 2003), meaning that they are ‘facing an extremely high risk of extinction in the wild’. Unlike C. yunnanensis, living specimens of C. mccordi and C. zhoui exist in captivity and command very high prices in the international pet trade. Despite their commercial value, few wild-caught individuals of C. mccordi and C. zhoui have appeared in trade since their description (Lau & Shi 2000), suggesting that they have become commercially extinct (IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and Asian Turtle Trade Working Group 2000). C. mccordi and C. zhoui were described from pet trade and market specimens, are unknown in the wild and have no reliable localities (figure 1). If these species are not located and protected, they will soon become extinct in the wild like C. yunnanensis.

Acknowledgements

Sequencing was conducted in The Field Museum’s Pritzker Laboratory for Molecular Systematics and Evolution and operated with support from the Pritzker Foundation. Financial support to B.L.S. was provided by The John D. and Catherine T. MacArthur Foundation (with Harold Voris and Robert Inger). This is UCMP contribution 1853. This work is LBNL-54722 and was performed under the auspices of the US Department of Energy, Office of Biological and Environmental Research. Richard Gemel, Vienna Natural History Museum (NMW) provided data on specimens in his care. The authors thank Ted Papenfuss for his encouragement and comments. Phil Spinks and Torsen Blanck are thanked for discussions and ideas. The first extraction protocol used for the sample of C. yunnanensis is based on a protocol provided to us by Kerri Dugan of the Counterterrorism and Forensic Science Research Unit at the Federal Bureau of Investigation.


DNA of extinct turtle J. F. Parham and others


Visit www.journals.royalsoc.ac.uk and navigate through to this article through *Biology Letters* to see the accompanying electronic appendix.