Influence of fibril taper on the function of collagen to reinforce extracellular matrix

K. L. Goh1,†, J. R. Meakin2, R. M. Aspden3 and D. W. L. Hukins4,*

1School of Optometry & Vision Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, UK,
2Department of Biomedical Physics & Bioengineering, and 3Department of Orthopaedic Surgery, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK,
4School of Engineering, Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Collagen fibrils provide tensile reinforcement for extracellular matrix. In at least some tissues, the fibrils have a paraboloidal taper at their ends. The purpose of this paper is to determine the implications of this taper for the function of collagen fibrils. When a tissue is subjected to low mechanical forces, stress will be transferred to the fibrils elastically. This process was modelled using finite element analysis because there is no analytical theory for elastic stress transfer to a non-cylindrical fibril. When the tissue is subjected to higher mechanical forces, stress will be transferred plastically. This process was modelled analytically. For both elastic and plastic stress transfer, a paraboloidal taper leads to a more uniform distribution of axial tensile stress along the fibril than would be generated if it were cylindrical. The tapered fibril requires half the volume of collagen than a cylindrical fibril of the same length and the stress is shared more evenly along its length. It is also less likely to fracture than a cylindrical fibril of the same length in a tissue subjected to the same mechanical force.

Keywords: collagen; extracellular matrix; fibre reinforcing; tapered fibrils

1. INTRODUCTION

The extracellular matrix (ECM) is a biological composite material in which collagen fibrils provide reinforcement by resisting forces that tend to pull the tissue apart (Hukins & Aspden 1985). Collagen fibrils isolated from tissues of invertebrates (Trotter & Koob 1989; Thurmond & Trotter 1994; Trotter et al. 1994, 1998, 2000a) and vertebrates (Holmes et al. 1994, 1998; Birk et al. 1995, 1996; DeVente et al. 1997; Graham et al. 2000) have tapered ends. Tapered ends are also observed in collagen fibrils formed in vitro (Kadler et al. 1990; Holmes et al. 1992, 1996; Fertala et al. 1996). Measurements of axial mass distribution along these fibrils using dark-field scanning transmission electron microscopy have established that the taper is paraboloidal in shape (Holmes et al. 1992; Trotter et al. 1998, 2000a; Graham et al. 2000).

The purpose of this paper is to investigate how the taper influences the ability of collagen fibrils to reinforce the ECM. Collagen fibril lengths have been estimated as being from about 12–30 μm (vertebrates; DeVente et al. 1997) to 600 μm (invertebrate; Trotter & Koob 1989), which is low compared to the dimensions of most tissues. When a force is applied to the tissue, an interfacial shear stress will then be generated between the stiff collagen fibrils and the ECM macromolecules that surround them. By analogy with synthetic composite materials, this shear stress tends to stretch the fibrils; the restoring force in the stretched fibrils then balances the applied force (Hukins & Aspden 1985). The ECM contains a variety of macromolecules whose functions are primarily structural (proteoglycans (PG), hyaluronan, elastin, collagens) and other molecules that have accessory functions (mainly cell adhesion; Hukins et al. 1995). PG forms a hydrated gel that surrounds the fibrils (Hukins & Aspden 1985); in at least some tissues, molecules such as decorin and biglycan may have a mechanical role by being responsible for fibril–gel adhesion (Hedbom & Heinegård 1993; Roughley & Lee 1994; Keene et al. 2000).

In general, stress transfer to the collagen fibrils can then be considered to occur by two physical mechanisms: elastic stress transfer (when the stress in the ECM, arising from the applied force, is low) and plastic stress transfer (when it is high) in which the PG-gel flows past the reinforcing collagen fibrils (Goh et al. 2004a). Eventually the applied force will be so high that the ECM and, hence, the tissue, ruptures. This paper is concerned with what happens before rupture, i.e. with first elastic and then plastic stress transfer. Although ECM is visco-elastic, it approaches elastic behaviour when loads are applied in time-scales much shorter than its relaxation time (see, for example, eqn 2 in Holmes & Hukins 1996); relaxation times typically have values of 10 min (tendon; Elliott et al. 2003) and 16 ± 8 min (intervertebral disc; Holmes & Hukins 1996). Following our previous work, elastic transfer is investigated by finite element (FE) modelling since there is no analytical theory for elastic stress transfer to non-cylindrical fibres (Goh et al. 2004b); plastic transfer is investigated theoretically (Goh et al. 1999). The present paper uses the theory and techniques developed previously to investigate how taper influences the ability of
Influence of fibril taper

2. METHODS

(a) The model

Figure 1 shows the model that has been used previously to determine the stress in a non-cylindrical fibre in a fibre-reinforced composite material (Goh et al. 2004a). In the context of this paper, the Z-axis is defined to be along the axis of a collagen fibril whose centre is at Z = 0 and whose ends are at Z = −1 and Z = +1. Because of the symmetry of the model, we need only consider the axial stress distribution, σZ, along a fibril from Z = 0 to Z = 1. The fibril is defined to have a length of 2L and a radius, at its centre, of re. We define the axial ratio of the fibril to be q = L/re. The response of the model to an applied force also depends on the Young’s modulus of the fibril, E0, and its surroundings, Em.

(b) Validity of the model

At first sight, our model is restricted to fibrils whose tapers are identical at both ends. Such symmetric tapers are observed in collagen fibrils from ligaments of sea urchin (Eucidaris tribuloides) and sea cucumber (Cucumaria frondosa) (Trotter & Koob 1989; Trotter et al. 1998, 2000a). Asymmetric fibrils are observed in vitro (Kadler et al. 1990; Holmes et al. 1992, 1996; Fertala et al. 1996) and in developing tissues (Birk et al. 1995, 1996; Graham et al. 2000) where one end has a long slender taper (x-tip) and the other a shorter taper (β-taper). However, our model enables us to draw general conclusions about the effects of tapered fibrils which can be applied, separately if need be, to both ends, even if their tapers are not the same. Similarly, the results from the model can be applied to understanding the function of the tapered ends of fibrils that are cylindrical in the middle (Trotter et al. 1998, 2000a,b). The principles also apply to tapers in which the slope changes and so have to be described as a combination of two paraboloids (Trotter et al. 1998, 2000a); the results from our model can be applied to each portion of the taper separately.

Our model is restricted to fibrils that are oriented in the direction of the tensile force applied to the tissue. Collagen fibrils in the ECM are oriented in the direction in which the tissue has to withstand tensile stress (Hukins 1984; Hukins & Aspden 1985). In some soft tissues collagen fibrils are further oriented by the application of tensile stress (Hukins et al. 1990).

(c) Assigning values to the parameters of the model

In order to implement the model, we require values of E0/Em. Measurements of E0 range from 10^8 to 10^10 Pa (Cusack & Miller 1979; Ashby et al. 1995). To estimate Em, we note that the nucleus pulposus of intervertebral disc, which contains a low proportion of randomly oriented collagen, has a Young’s modulus of 10^4 to 10^5 Pa (Iatridis et al. 1997; Leahy & Hukins 2001); the hydrated gel in digital flexor tendon appears to have a Young’s modulus of the order of 10^5 Pa (Hooley & Cohen 1979). Thus the upper and lower limits of E0/Em appear to be between 10^1 and 10^6. This approach implies that the components are isotropic and is reasonable for the continuum surrounding the fibril, which is composed of a gel that is expected to have random macromolecular orientations. Collagen fibrils are cross-linked assemblies of oriented rod-like molecules (Hukins et al. 1995) and are, therefore, expected to have anisotropic properties. There is inadequate information to model their anisotropy. In any case, such a model would be more complicated than is required to investigate the influence of taper on the ability of collagen fibrils to reinforce the ECM.

Values of q range from 550 for fibrils from the medial collateral ligaments of young rats (DeVente et al. 1997) to 3500 for sea urchin ligaments (Trotter & Koob 1989). Difficulties in isolating intact fibrils, especially from vertebrates (Kadler et al. 2000; Trotter et al. 2000b) mean that the range may be much wider. At the bottom end q was reduced to 200. However, q was not increased at the upper end for two reasons. One was the difficulty of performing an FE analysis when q is very large. The other reason is that, at the upper limit of q, the taper is so slight, except near the tip, that the fibre closely resembles a cylinder with tapered ends, as described in the previous section; this result can be inferred intuitively from figure 1.

(d) Modelling elastic stress transfer

Elastic stress transfer was investigated by FE modelling as described previously (Goh et al. 2004a). However, previous work used an educational software package (ANSYS UNIVERSITY HIGH version 5.4, Ansys Inc., Houston, PA) that did not allow the range of q and E0/Em values required here to be investigated. The work reported here used a more versatile version of the software (ANSYS STRUCTURAL version 6.0, Ansys Inc., Houston, PA).

(e) Modelling plastic stress transfer

Plastic stress transfer is characterized by a constant value for the interfacial shear stress, τ (Goh et al. 1999). Then σZ can be calculated, for cylindrical fibrils and fibrils with a parabolic taper, from τ and q, for Z in the range 0 to +1, using the appropriate formulae that do not depend on E0 or Em.

Each case, providing reasonable results (Goh et al. 1999). These analytical calculations yield the same results as an FE model with constant τ (Goh et al. 2000).

The advantage of this analytical approach is that the results for all values of q and all loading conditions can be plotted on a single graph, for a given fibre shape by plotting σ_z/s against Z (Aspden 1994; Goh et al. 1999, 2000). At the molecular level, a constant value for τ implies a constant number of interactions per unit area at the fibril surface (Aspden 1994; Goh et al. 1999). A constant number of interactions per unit area is to be expected if the macromolecular composition does not change along the length of a fibril, e.g. if the number of decorin molecules in a D-period of the collagen fibril remains constant (Hedbom & Heinegaard 1993; Keene et al. 2000). In plastic stress transfer, the interfacial stress involves overcoming these intermolecular forces at the interface between the collagen fibril and its surroundings.

3. RESULTS
(a) Elastic stress transfer
The effect of a paraboloidal taper, compared with a uniform cross-section, is to reduce the stress at the fibril centre (figure 2). From this value it then rises to the end of the fibril where it has to fall rapidly to zero (assuming no force transmission across the fibril ends). In contrast, axial stress in the uniform fibril falls monotonically from its maximum at the fibril centre (figure 2). The variation of stress in the paraboloidal fibril, along most of its length is more uniform than that in the fibril without a taper, i.e. more of the fibril carries an appreciable stress. This effect can be seen in all four graphs representing the full range of values for q and E_t/E_m: (a) both high, (b) q low and E_t/E_m high, (c) q high and E_t/E_m low and (d) both low. The effect is less obvious in (c) (high q and low E_t/E_m). The shapes of the curves for the cylindrical fibril are those predicted by theory, indicating that the FE model is capable of providing reasonable results (Goh et al. 2004a). There is no analytical theory that can be applied to stress transfer to a tapered fibril; this is the reason for using FE modelling to investigate elastic stress transfer.

(b) Plastic stress transfer
Figure 3 shows that for a cylindrical fibril, the stress rises from zero (at its ends) to a maximum value at its centre. For a fibril with a paraboloidal taper the stress rises more rapidly near the ends but less steeply near the centre. The overall result is that tapering the fibril leads to a somewhat more even stress distribution along the fibril length and that the stress at the centre of the fibril is reduced. Indeed the stress at the centre of a cylindrical fibril is 1.5 times that at the centre of a tapered fibril.

4. DISCUSSION
One advantage of having tapered collagen fibrils (resembling paraboloids) rather than their not being tapered (i.e. cylindrical) is to make more effective use of the collagen...
synthesized by the cells in the tissue. For a tapered fibril, the axial stress distribution is more uniform along its length. This greater uniformity enables greater use of the full length of the fibril in reinforcing the ECM. The volume factor combined with the more uniform stress distribution, means that collagen is more effective in reinforcing ECM if it is used to make tapered fibrils rather than cylinders.

A second advantage of tapered fibrils is that they are less likely to fracture than cylindrical fibrils of the same length. When the force applied to a tissue is low, stress will tend to be transferred to its collagen fibrils elastically; increasing the force will lead first to plastic stress transfer and, eventually, to failure (see §1). During plastic stress transfer, the stress in a fibril is greatest at the centre. Thus the fibril centre is a potential site for failure. Failure is more likely in a cylindrical fibril, than in a paraboloidal fibril of the same length, because the tensile stress at its centre is 1.5 times as great.

Because elastic interfacial shear stresses are greatest near the ends of a tapered fibril, the transition from elastic to plastic behaviour will occur first near its ends. This will provide a fail-safe mechanism in that the risk of damage due to plastic behaviour or the fibril strength being exceeded in this regime will be limited to the fibre ends. This mechanism will maintain the length of a fibril for as long as possible during failure rather than suffering an immediate halving in length that may occur in a cylindrical fibril.

As a result of this second advantage, the growth of tapered fibrils is less likely to be disrupted by high mechanical forces applied to a tissue. It has been suggested that fibrils grow by the binding of collagen molecules to the surface, near their centres (Holmes et al. 1992, 1996); this accretion process leads to additional binding sites that are propagated so that the fibrils simultaneously grow in length and diameter (Trotter et al. 2000a, b). Fracture of the fibrils, at their centres, would then disrupt this growth process.

We thank Dr Katharine Mathias for collaboration in early stages of our work on tapered fibres, Dr David Holmes for valuable discussions and the Arthritis Research Campaign for funds for purchasing the computer software used in this project.

REFERENCES

