Spatial and temporal dependencies of cross-orientation suppression in human vision

Tim S. Meese* and David J. Holmes

School of Life and Health Sciences, Aston University, Birmingham B47ET, UK

A well-known property of orientation-tuned neurons in the visual cortex is that they are suppressed by the superposition of an orthogonal mask. This phenomenon has been explained in terms of physiological constraints (synaptic depression), engineering solutions for components with poor dynamic range (contrast normalization) and fundamental coding strategies for natural images (redundancy reduction). A common but often tacit assumption is that the suppressive process is equally potent at different spatial and temporal scales of analysis. To determine whether it is so, we measured psychophysical cross-orientation masking (XOM) functions for flickering horizontal Gabor stimuli over wide ranges of spatio-temporal frequency and contrast. We found that orthogonal masks raised contrast detection thresholds substantially at low spatial frequencies and high temporal frequencies (high speeds), and that small and unexpected levels of facilitation were evident elsewhere. The data were well fit by a functional model of contrast gain control, where (i) the weight of suppression increased with the ratio of temporal to spatial frequency and (ii) the weight of facilitatory modulation was the same for all conditions, but outcompeted by suppression at higher contrasts. These results (i) provide new constraints for models of primary visual cortex, (ii) associate XOM and facilitation with the transient magno- and sustained parvostreams, respectively, and (iii) reconcile earlier conflicting psychophysical reports on XOM.

Keywords: contrast gain control; psychophysics; cross-orientation inhibition; masking; human vision

1. INTRODUCTION

Cross-orientation suppression (XOS) is the process whereby a cell’s response to a stimulus at its preferred orientation is reduced by the superposition of a mask stimulus at another orientation (Bonds 1989; Nelson 1991; Allison et al. 2001), often perpendicular to the preferred stimulus (Bishop et al. 1973; Morrone et al. 1982; DeAngelis et al. 1992). This has attracted considerable attention owing to its supposed involvement in orientation tuning (Sillito 1979; Bonds 1989; Somers et al. 1995; Series et al. 2004), contrast gain control (Albrecht & Geisler 1991; DeAngelis et al. 1992; Heeger 1992; Carandini et al. 1997), perceptual grouping and segmentation (Morrone et al. 1983), adaptation after-effects (Snowden & Hamnett 1992; Barrett et al. 2002) and efficient image coding strategies (Bonds 1991; Schwartz & Simoncilli 2001; Field & Wu 2004; Olshausen & Field 2005; though see Series et al. 2004).

A psychophysical phenomenon that has been closely linked to XOS is cross-orientation masking (XOM). However, clear evidence for XOM was slow to emerge. Vision research in the 1970s and 1980s was dominated by the notion of independent spatial channels (Campbell & Robson 1968; Blakemore & Campbell 1969; Graham 1989), and masking was supposed to occur only when the mask excited the mechanism used to detect the target stimulus (Wilson et al. 1983; Daugman 1984; Phillips & Wilson 1984; Anderson & Burr 1989; Harvey & Doan 1990). In this model, an orthogonal mask would not influence the orientation-tuned filters of visual cortex, and this is what was reported by several early studies (Campbell & Kulikowski 1966; Daugman 1984; Harvey & Doan 1990). However, a subsequent erosion of the independent channels model (e.g. Henning et al. 1975; Olzak 1985; Burr & Morrone 1987; Olzak & Thomas 1991) was followed by an influential proposal involving mutual inhibition between filters tuned to the full range of orientations (Albrecht & Geisler 1991; Heeger 1992). This model of cortical physiology prompted more detailed psychophysical measurements of contrast-masking functions (Foley 1994), which revealed that a cross-oriented mask could raise detection threshold (quite substantially) after all (Ross & Speed 1991; Ross et al. 1993; Foley 1994). This process is now commonplace in functional models (Foley & Chen 1997; Thomas & Olzak 1997; Graham & Sutter 1998; Olzak & Thomas 1999; Meese 2004; Baker et al. submitted) and image-processing models of suprathreshold spatial vision (Watson & Solomon 1997; Brady & Field 2000; Itti et al. 2000; Clatworthy et al. 2003). Nevertheless, the question remains why earlier psychophysical masking studies failed to find XOM. Furthermore, authors of most contemporary models of the process make a simplifying, often tacit, assumption that XOS is scale invariant (Graham & Sutter 1996; Rohaly et al. 1997; Watson & Solomon 1997; Brady & Field 2000; Clatworthy et al. 2003), but there is no evidence to support this.

We address these issues here by measuring contrast-masking functions of XOM1 for a wide range of spatio-temporal frequencies. We find that XOM is a low spatial frequency (SF) and high temporal frequency (TF) phenomenon. This places new constraints on models of spatial vision as well as reconciling the literature on XOM in humans (see §4).

* Author for correspondence (t.s.meese@aston.ac.uk).
2. MATERIAL AND METHODS

(a) Equipment and observers

Stimuli were displayed on a Sony monitor using a VSG2/3 or VSG2/4 stimulus generator controlled by a PC. Mean luminance of the central display region was 62 cd m\(^{-2}\) The display was gamma corrected to ensure linearity over the full contrast range, and a frame interleaving technique (60 Hz per image) allowed the contrasts of the mask and the test stimuli to be varied independently using lookup tables. The VSG2/3 and VSG2/4 were operated in pseudo 12-bit mode and pseudo 15-bit mode, respectively.

The observers were the two authors (D.J.H. and T.S.M., aged 30 and 40, respectively). Both are psychophysically experienced, wore their normal optical correction throughout and viewed the stimuli binocularly. They made observations in a dark room with their heads in a chin and forehead rest.

(b) Stimuli

Mask and test stimuli were sine-phase, circular Gabor patches. The test patch was always horizontal and the mask patch was always vertical. With the exception of contrast, the mask and the test were otherwise identical (figure 1). The Gabor patches were scaled with SF such that their full-width at half-height was always 1.65 cycles. This involved manipulating both the viewing distance and the stimulus dimensions rendered on the display. Carrier spatial frequencies were 0.5, 1, 2, 4 and 8 c deg\(^{-1}\), and were viewed from 57, 114, 114, 228 and 228 cm, respectively. Four different temporal waveforms were used (figure 2). These had peak temporal frequencies of 0.5 (nominal), 1, 4 and 15 Hz (see the caption of figure 2 and § for further details and comment). Stimulus contrast is expressed as Michelson contrast in per cent, given by \(c = 100 \left(L_{\text{max}} - L_{\text{min}} \right) / (L_{\text{max}} + L_{\text{min}}) \), and in dB by \(20 \log(c) \). Mask contrast was in the range of 0–45% (33 dB).

In detection experiments, it is common practice to place a small fixation point in the centre of the display. However, we were concerned that this might have had a suppressive influence on our stimuli, particularly at the higher spatial frequencies. To try and avoid this problem, we used a ‘quad’ of points arranged around the stimulus patch in a square. These points were always three carrier cycles away from the centre of the display and were visible throughout the experimental sessions. This arrangement provided a very strong cue to stimulus location with the aim of reducing stimulus uncertainty (Pelli 1985; Petrov et al. 2006).

Later we shall describe our stimuli in terms of their speed (the ratio of temporal and spatial frequencies). Although our stimuli did not drift, a flickering grating is equivalent to the superposition of a pair of identical grating components drifting in opposite directions. The spatio-temporal frequency ratio is the speed of these components.

(c) Procedure

A two-interval forced-choice (2IFC) procedure was used to estimate detection thresholds. One interval contained only the mask patch and the other contained the mask plus the test patch. Observers indicated which interval contained the test patch by pressing one of the two mouse buttons and auditory feedback indicated correctness of response. Stimulus conditions were ordered by random selection from nested blocks of TF, mask contrast and SF. For each condition, a pair of randomly interleaved three-down, one-up staircases was used with a step size of 2.5 dB. Each staircase terminated after 12 reversals and the data from the pair collapsed before performing probit analysis to estimate the threshold (75% correct) and the standard error. In the rare cases where the standard error was greater than 3 dB, the data were discarded and the session was rerun. All the conditions were performed three times, resulting in estimates from about 300 experimental trials per threshold.

The time-intervals between (i) 2IFC stimulus presentations and (ii) the release of the button press and the onset of the next stimulus were designed to avoid interference from afterimages. These differed across conditions and observers and are summarized in table 1.

3. RESULTS

Figure 3 shows detection threshold as a function of mask contrast for 15 different spatio-temporal frequencies for D.J.H. XOM is the most severe in the bottom left corner of the figure, where TF is high and SF is low. Towards the opposite corner of the figure (high SF and low TF), there is very little evidence for XOM. In fact, in this region (and elsewhere) there are several instances where the mask causes the threshold to drop below that measured at baseline (mask contrast = 0%; horizontal dashed lines), indicating cross-orientation facilitation (XOF) of the order of 2 or 3 dB. We shall consider this unexpected phenomenon further in §.

One possibility is that XOM is not seen at the higher spatial frequencies because the loss of sensitivity in that region means that the mask does not rise to sufficient potency. To show that this was not so, the entire dataset was replotted in figure 4, where the mask and test contrasts have been normalized to detection threshold for each spatio-temporal frequency (we assume that sensitivity to mask and test is the same). The level of masking differs across the three panels (different temporal frequencies) and also within each panel (different spatial frequencies), providing good evidence that XOM depends on both TF and SF. Therefore, XOM is not scale invariant in either space or time. This can be illustrated with a specific example in the SF domain. As an observer moves away from a pair of flickering orthogonal gratings, the retinal SF of the image will increase, but the suppressive influence between the gratings will decrease.

(a) A functional model of XOM and XOF

Here, we develop a widely used functional expression for contrast gain control (Foley 1994; Meese 2004) to accommodate XOF and to fit our masking data.
Table 1. Timing parameters for stimulus presentations. (‘2IFC ISI’ is the period between the two stimulus intervals in a trial. ‘Post-response’ is the duration between the offset of a button press and the onset of the next stimulus presentation.)

<table>
<thead>
<tr>
<th>temporal frequency (Hz)</th>
<th>stimulus duration (ms)</th>
<th>T.S.M. 2IFC ISI (ms) post-response (ms)</th>
<th>D.J.H. 2IFC ISI (ms) post-response (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1000</td>
<td>not tested</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
<td>700</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td>67</td>
<td>400</td>
<td>200</td>
</tr>
</tbody>
</table>

Figure 2. Temporal waveforms used in the experiment. (a) The nominal 0.5 Hz waveform is a raised negative cosine function with a central plateau of 500 ms. (b) The 1 Hz waveform is a single cycle of a sine-wave. (c) The 4 Hz waveform is two cycles of a sine-wave multiplied by a raised negative cosine function with a central plateau of 250 ms (one cycle). (d) The 15 Hz waveform is a biphasic pulse with a length of four frames (33.3 ms = two frames each for mask and test) in each phase. For D.J.H., the temporal frequencies were 0.5, 4 and 15 Hz. For T.S.M., the temporal frequencies were 1, 4 and 15 Hz.

Figure 3. XOM functions for D.J.H. Horizontal lines indicate detection thresholds for a mask contrast of 0%. Data points above and below these lines indicate masking and facilitation, respectively. Different panels are for different spatio-temporal frequencies (see figure labels). Error bars show ±1 s.e.m. The data are from approximately 31 500 trials.
4. DISCUSSION

(a) Physiological constraints

We performed XOM experiments and found that the weight of XOS (ω) depends upon both SF and TF in a lawful way. To a first approximation, the relation is $\omega \propto \sqrt{\text{TF/SF}}$. Why the dependency should have this exact form is not clear, but we suggest that it might be related to constraints of the underlying physiology.

It is generally agreed that the magnocellular stream extends its spatial resolution because of saturation is that it interferes with the processing of the test stimulus, plotted α and ω as functions of SF, TF and speed (where speed = TF/SF). We found no systematic relation for α and matters were little better for ω, though a power function with exponent of 0.31 accounted for 19% of the variance in a plot of ω against speed. Next we reduced the number of free parameters in the model by constraining ω or α to have the same value across the entire dataset. Fixing ω in this way was a dismal failure, but fixing α caused the RMS error of the fit to decline by only 0.19 dB and saved 14 free parameters. The fits are shown in figure 5a for D.J.H., where 16 free parameters describe 15 masking functions. A plot of ω against speed (TF/SF) now reveals lawful behaviour with a power law accounting for 89% of the variance (figure 6a). We performed the same analysis on the results of T.S.M., which had a similar form to those of D.J.H. For this observer, six masking functions were fit by seven free parameters with an RMS error of 0.77 dB (figure 5b), and a power law accounted for 98% of the variance of ω against speed (figure 6b). For T.S.M., the weight of XOF (α) was less than that of D.J.H. (insets in figure 6).

The response (resp) of the detecting mechanism is given by

$$\text{resp} = \frac{c_{\text{test}}(1 + a c_{\text{mask}})}{1 + c_{\text{test}} + w c_{\text{mask}}},$$

where c_{test} and c_{mask} are test and mask contrasts (in %) and p, q, w and α are free parameters. The exponents p and q are usually constrained by pedestal masking experiments, but no such experiments were performed here. Instead, we set them to widely used defaults of $p=2.4$ and $q=2.0$ (Legge & Foley 1980). Their precise values are not important for the quality of our fits.

In 2IFC, the decision variable at threshold is given by the difference between the detecting mechanism’s response to the mask alone and mask plus test

$$\text{resp}_{\text{test+mask}} - \text{resp}_{\text{mask}} = k,$$

where k is proportional to the standard deviation of the entire stimulus (in the model). However, the model is to be fit to data that are normalized to detection thresholds which, from equations (3.1) and (3.2), constrains $k=0.5$ ($((c_{\text{test}}/c_{\text{null}})^{p} + (1 + c_{\text{test}}/c_{\text{null}}))=0= k=1/2$). This leaves two free parameters (ω and α) for each masking function. The weight ω controls the suppressive influence of the mask on the denominator which is optionally called XOS and is designed to produce XOM. In equation (3.1), the numerator term in parenthesis provides a modulatory influence from the mask on excitation, producing cross-orientation enhancement (XOE). This is designed to accommodate XOF and is controlled by the free parameter α. Similar arrangements, but for different contexts, have been considered by Xing & Heeger (2001), Chen & Tyler (2002) and Yu et al. (2003). Note that XOS is subject to the accelerating exponent q, whereas XOE is not. This means that suppression will outpace enhancement as contrast increases.

We fit the model to the full dataset from D.J.H. using numerical analysis to solve the model equations for c_{test} and a downhill simplex algorithm to find the best fitting parameters by minimizing the RMS error between the data and the model fit. The RMS error for the entire dataset (15 functions, 90 data points and 30 free parameters) was 0.62 dB (not shown) and is very good. To try and understand the relation between the free parameters and the spatio-temporal characteristics of the
as population codes.) The problem is that strong signals drive much of the population into saturation and this distorts the signal's signature. However, by using the overall population activity to normalize the response of each cell in the population, saturation occurs at lower signal strengths for the less strongly driven cells and this preserves the signal's signature (Albrecht & Geisler 1991; Heeger 1992). Thus, the saturating magnocellular

Figure 5. Model fits and normalized XOM functions of (a) D.J.H. and (b) T.S.M. Note the different SFs and TFs used by the two observers. In each panel, 0 dB corresponds to detection threshold for a mask contrast of 0% (baseline), as shown by the left most point in each plot. The model was constrained to pass through these points, and so they did not contribute to the calculation of RMS errors of the fits. These were 0.81 and 0.77 dB for D.J.H. and T.S.M., respectively. Error bars show ±1 s.e.m.
pathway has a much stronger need for the normalizing effects of XOS than does the more linear parvocellular pathway. This is consistent with our finding that XOS is a high-speed (magnocellular) phenomenon.

Another issue relating to anatomy and physiology concerns the locus of XOS. Heeger (1992) and others envisaged a single mechanism of intracortical inhibition, but recent single-cell work in cat suggests that at least two pathways are involved. One of these is cortical and dichoptic (Li et al. 2005; Sengpiel & Vorobyov 2005), and the other is sub-cortical and monoptic (Freeman et al. 2002; Bonin et al. 2005; Li et al. 2005; Sengpiel & Vorobyov 2005). We have also found evidence for at least two suppressive pathways in human, consistent with the anatomical arrangement proposed for cat (Baker & Meese 2004). Nevertheless, we envisage that the current model will need to be further developed to handle the details of cross-oriented monoptic and dichoptic masking in the spatio-temporal frequency domain.

(b) Temporal waveforms
Of the four temporal waveforms that we used (figure 2), three waveforms at 1 Hz and above are band-limited. However, the nominal 0.5 Hz stimulus (used only by D.J.H.) has no complementary negative lobe and its amplitude spectrum peaks at 0 Hz. Of course, most of the stimulus energy is above 0 Hz, and so we chose a nominal label of 0.5 Hz, on the grounds that the positive lobe represents half of one cycle (1000 ms). But by expressing our stimuli in terms of their speed (TF/SF), this decision is not arbitrary. Fortunately, we found that our conclusions are robust against the specific value chosen. We recalculated the slopes of the power functions in figure 6a, reassigning the 0.5 Hz conditions first to 0.25 Hz and then 1 Hz, and found log-log slopes (exponents) of 0.41 and 0.55, and r^2 values of 0.85 and 0.92, respectively. The deviations between these figures and the values associated with figure 6a (slope = 0.48; $r^2 = 0.89$) are marginal and do not change our conclusions.

(c) Meta-analysis
As mentioned in §1, early psychophysical masking studies found no threshold elevation from a cross-oriented mask, whereas later studies did. In our present study, we have found that XOM depends upon both SF and TF, and these parameters have varied widely between previous studies. Table 2 summarizes this variation as well as our estimates of the stimulus speeds (TF/SF) used and whether XOM was found. It is clear that speed accounts for much of the discrepancy in the earlier literature (see table 2 caption for further details of the analysis).

A previous study of note is that of Burbeck & Kelly (1981), who measured detection thresholds (using a method of adjustment) in the presence of cross-oriented masks for a wide range of spatio-temporal frequencies. Like us, they found that XOM was located in the high-speed corner of spatio-temporal space. However, those authors interpreted their results in terms of a pedestal masking process within non-oriented filters. Ferrera & Wilson (1985) made the same interpretation of their own data, but the idea is not consistent with results from twin-masking studies (Ross & Speed 1991; Foley 1994; Watson & Solomon 1997; Meese 2004). Nevertheless, we envisage that the current model will need to be further developed to handle the details of cross-oriented monoptic and dichoptic masking in the spatio-temporal frequency domain.
Cross-orientation suppression T. S. Meese & D. J. Holmes 133

Table 2. Meta-analysis of psychophysical XOM studies for non-drifting stimuli. (The table is ordered according to whether XOM was found and then chronologically. The study by Burbeck & Kelly (1981) appears three times, owing to the wide range of conditions they investigated: see their work for further details and further conditions. In studies where fixed stimulus duration and no flicker were used (e.g. duration = 500 ms), TF was thus estimated as TF \sim 1/(2 \times \text{duration}). For convenience, we label temporal frequencies less than or equal to 0.5 Hz as ‘slow’, those greater than or equal to 2 Hz as ‘fast’ and those in between as ‘intermediate’. Whether XOM was found is clearly dependent upon stimulus speed (MOA is method of adjustment, and nIFC is ‘n’ interval forced-choice.).)

<table>
<thead>
<tr>
<th>evidence for XOM</th>
<th>speed (TF/SF, deg s(^{-1}))</th>
<th>SF (c deg(^{-1}))</th>
<th>TF or duration (ms)</th>
<th>study</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>slow (<0.05)</td>
<td>10</td>
<td>long</td>
<td>Campbell & Kulikowski (1996)</td>
<td>MOA</td>
</tr>
<tr>
<td>no</td>
<td>slow (0.05–0.33)</td>
<td>≥3</td>
<td>≤1 Hz</td>
<td>Burbeck & Kelly (1981)</td>
<td>MOA</td>
</tr>
<tr>
<td>no</td>
<td>slow (~0.125)</td>
<td>8</td>
<td>500 ms</td>
<td>Daugman (1984)</td>
<td>2IFC</td>
</tr>
<tr>
<td>no</td>
<td>slow (~0.125)</td>
<td>8</td>
<td>500 ms</td>
<td>Harvey & Doan (1990)</td>
<td>3IFC</td>
</tr>
<tr>
<td>intermediate</td>
<td>intermediate (~1.3)</td>
<td>~1.5</td>
<td>~2 Hz</td>
<td>Burbeck & Kelly (1981)</td>
<td>MOA</td>
</tr>
<tr>
<td>intermediate</td>
<td>slow (~0.5)</td>
<td>4</td>
<td>250 ms</td>
<td>Itti et al (2000)</td>
<td>2IFC</td>
</tr>
<tr>
<td>yes</td>
<td>fast (≥4)</td>
<td>≤1</td>
<td>≥4 Hz</td>
<td>Burbeck & Kelly (1981)</td>
<td>MOA</td>
</tr>
<tr>
<td>yes</td>
<td>fast (≥4)</td>
<td>≤2</td>
<td>8 Hz</td>
<td>Ferrera & Wilson (1983)</td>
<td>1IFC</td>
</tr>
<tr>
<td>yes</td>
<td>fast (4.4)</td>
<td>2</td>
<td>8.8 Hz</td>
<td>Ross & Speed (1991)</td>
<td>2IFC</td>
</tr>
<tr>
<td>yes</td>
<td>fast (4.4)</td>
<td>2</td>
<td>8.8 Hz</td>
<td>Ross et al (1993)</td>
<td>2IFC</td>
</tr>
<tr>
<td>yes</td>
<td>fast (2)</td>
<td>1</td>
<td>2 Hz</td>
<td>Snowden (1994)</td>
<td>2IFC</td>
</tr>
<tr>
<td>yes</td>
<td>fast (7.6)</td>
<td>2</td>
<td>33 ms</td>
<td>Foley (1994)</td>
<td>2IFC</td>
</tr>
<tr>
<td>yes</td>
<td>intermediate (~0.83)</td>
<td>2</td>
<td>300 ms</td>
<td>Foley & Chen (1997)</td>
<td>2IFC</td>
</tr>
<tr>
<td>yes</td>
<td>fast (7.5)</td>
<td>2</td>
<td>15 Hz</td>
<td>Meese & Holmes (2002)</td>
<td>2IFC</td>
</tr>
<tr>
<td>yes</td>
<td>fast (~5)</td>
<td>1</td>
<td>100 ms</td>
<td>Meese (2004)</td>
<td>2IFC</td>
</tr>
<tr>
<td>yes</td>
<td>intermediate (~0.67)</td>
<td>5</td>
<td>150 ms</td>
<td>Petrov et al (2005)</td>
<td>2IFC</td>
</tr>
</tbody>
</table>

(unpublished) data of our own, with a model incorporating oriented filters and XOS. At 15 Hz and 0.5 c deg\(^{-1}\), our preliminary analysis suggests an orientation bandwidth that is narrower than that often supposed (approx. \pm 17° at half height) and that decreases only gently over a three-octave range. With constant TF (15 Hz), this increase in SF results in a decrease in speed. We suggest that in other studies, much of the masking attributed to within-channel influences from the mask on broadbandwidth mechanisms was in fact XOS, which was most weighty at higher speeds (e.g. lower SFs).

(d) Cross-orientation enhancement and facilitation
An unexpected result was the widespread finding of small levels of XOF (typically less than 3 dB) for D.J.H., particularly at the slower stimulus speeds. T.S.M. also showed this effect, but only at the slowest speed tested (4 c deg\(^{-1}\), 1 Hz). In a parallel study, we found XOF for superimposed cross-oriented masks for all the four observers tested at an SF of 7 c deg\(^{-1}\) and a stimulus pulse-duration of 400 ms (Meese & Holmes 2006; Meese et al. 2006). Work by others has found facilitation from pairs of cross-oriented flanking patches (Chen & Tyler 2002) and cross-oriented annuli (Yu et al. 2002). We compared the annulus effect with the superimposed effect and found them to be similar for an SF of 7 c deg\(^{-1}\) (Meese & Holmes 2006; Meese et al. 2006).

In the model here, the facilitatory influence (XOE) is constant across spatio-temporal frequency, but XOF is not seen at higher speeds where XOE is overpowered by masking. XOF/XOE is clearly more widespread than previously suspected, but what might be its cause? Chen & Tyler and Yu et al. attributed it to sensory interactions, and our equation (3.1) is consistent with that interpretation. For simplicity, we have supposed direct modulation by the mask mechanism on the detection mechanism. However, our results might also be understood in terms of disinhibition, involving an intermediate process or mechanism. Another possibility is that the mask reduces uncertainty (Pelli 1985; Petrov et al. 2006). However, we think it unlikely that this is the sole cause of the facilitatory effects here. In our experiment, a quad of fixation points provided a strong positional cue throughout (cf. the thin ring used by Petrov et al. 2006), meaning that the mask provided a cue only to spatio-temporal frequency. As spatio-temporal conditions were blocked, the observers were well aware of what they were trying to detect on each trial. Furthermore, uncertainty cannot explain the effects of XOF that have been found on perceived contrast from (i) annular surrounds (Xing & Heeger 2001; Yu et al. 2001) and (ii) superimposed cross-oriented masks from a different SF band (Meese & Hess 2005, unpublished observations). And neither can it explain the single-cell evidence for XOF on response rate (Silitto & Jones 1996; Cavanaugh et al. 2002; Jones et al. 2002). Nevertheless, we cannot rule out the possibility that reduction of uncertainty made some contribution to the facilitatory effects seen here.

5. CONCLUSIONS
XOS is a well-established process in single-cell physiology (Morrone et al. 1982; Bonds 1989), visual-evoked potentials (Burr & Morrone 1987; Candy et al. 2001) and visual psychophysics (Ross & Speed 1991; Foley 1994). However, the tacit assumption of scale invariance, made by many contemporary modellers, is wrong. In human vision, XOS depends upon both SF and TF and poses a challenge to all the theories based on the scale-invariant properties of natural images (Field 1987). XOS resides in the high-speed corner of spatio-temporal space and to a first approximation declines in inverse proportion to the square root of stimulus speed (TF/SF). We suggest that this characteristic might reflect the system requirements of the underlying neurophysiology, where the contrast-invariant maintenance of population codes requires a suppressive gain pool in the fast and saturating...
magnocellular stream, but less so in the slow and more linear parvocellular stream. The phenomenon of XOF is not restricted to lateral interactions as it had previously appeared, and the underlying process (XOE) is possibly ubiquitous for cross-oriented textures in close proximity on the retina. Both XOS and XOE depend upon mask contrast, but XOS grows much more rapidly than does XOE. On this view, the two processes of XOS and XOE are in competition across the entire spatio-temporal window, but the advantage (whether a mask produces XOM or XOF) depends upon spatio-temporal frequency and mask contrast. The functional significance of XOE remains to be elucidated.

This work was supported by a grant from the Engineering and Physical Sciences Research Council (GR/S74515/01) awarded to T.S.M. and Mark Georgeson. We would like to thank Mark Georgeson for his comments on an earlier draft.

ENDNOTE

1In this paper, we use the terms cross-orientation masking (XOM) and cross-orientation facilitation (XOF) to refer to experimental phenomena: whether contrast detection thresholds are raised or lowered by a mask, respectively. The terms cross-orientation suppression (XOS) and cross-orientation enhancement (XOE) refer to the processes that underpin these phenomena. In our functional model, the parameter \(\alpha \) is associated with XOS and the parameter \(\alpha \) is associated with XOE. In some places, the terms XOM and XOS, and XOF and XOE can be used interchangeably.

REFERENCES

Cross-orientation suppression T. S. Meese & D. J. Holmes 135

Olshausen, B. A. & Field, D. J. 2005 How close are we to understanding V1? Neural Comput. 17, 1665–1699.

