Exceptionally preserved lacustrine ostracods from the Middle Miocene of Antarctica: implications for high-latitude palaeoenvironment at 77° south

Mark Williams¹,*, David J. Siveter¹, Allan C. Ashworth², Philip R. Wilby³, David J. Horne⁴, Adam R. Lewis² and David R. Marchant⁵

¹Department of Geology, University of Leicester, Leicester LE1 7RH, UK
²Department of Geosciences, North Dakota State University, Stevens Hall, Fargo, ND 58105-5517, USA
³British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
⁴Department of Geography, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
⁵Department of Earth Sciences, Boston University, Boston, MA 02215, USA

A newly discovered Konservat-Lagerstätte from the Middle Miocene of the western Olympus Range, Dry Valleys, Antarctica, yields cypridoidean ostracods complete with preserved body and appendages. This is the first record of three-dimensionally fossilized animal soft tissues from the continent. The ostracods are preserved in goethite, secondary after pyrite, representing a novel mode of exceptional preservation. They signal a high-latitude (greater than 77° south) lake setting (Palaeolake Boreas) viable for benthic animal colonization prior to 14 Myr ago. Their presence supports the notion of warmer, tundra-like environmental conditions persisting in the Dry Valleys until the Middle Miocene.

Keywords: ostracods; Konservat-Lagerstätte; Dry Valleys; Miocene palaeoclimate; palaeolake; pyritization

1. INTRODUCTION
There are an estimated 60 000 described species of living and fossil ostracods (Ikeya et al. 2005), a group of small crustaceans that have colonized marine, non-marine and even semi-terrestrial habitats. The taxonomy of ostracods is based on their shell morphology and especially details of their appendages and other soft anatomy. However, although the most abundant arthropods in the fossil record (approx. 30 000 described species), the soft anatomy of ostracods is rarely preserved (see Smith 2000).

Fossil ostracods are documented from marine Cenozoic strata of the Antarctic region (e.g. Dingle 2000; Szczeczura 2001). However, apart from a putative record of non-marine ostracods from the Neogene (Ashworth et al. 2002), there is no record of fossilized ostracods from freshwater (lacustrine) continental interior sites of Cenozoic age. Ostracods occur in northern high-latitude lakes today, as in the Faroe Islands (Jeppesen et al. 2002), Greenland (Anderson & Bennike 1997), Svalbard (Svenning et al. 2006) and Lena River delta of the Siberian Arctic (Wetterich et al. 2007), but are scant in southern high-latitude lakes. Cypridid and candonid ostracods have been reported from freshwater lakes and ponds in sub-Antarctic South Georgia and Signy Island (Pugh et al. 2002; Dartnell 2005; Peck et al. 2005), but are unknown from the continental (interior) zone of Antarctica, including the Dry Valleys region.

Here, we describe a new and exceptionally well-preserved monospecific Middle Miocene ostracod fauna from the western Olympus Range in the Dry Valleys Region of the Transantarctic Mountains. The ostracods form part of an ancient lake biota, Palaeolake Boreas, preserved between Mount Boreas (which is situated at 161°5’E, 77°47’S) and Mount Aeolus at an elevation of 600 m above the floor of McKelvey Valley (at altitude 1425 m; for locality details see Lewis et al. in press, figs 1 and 2). Although ostracod carapaces have been reported in association with an exceptionally well-preserved Jurassic fossil assemblage in the Transantarctic Mountains (Babcock et al. 2006), none retain details of their soft anatomy. The material documented here represents the first record of three-dimensionally preserved fossilized animal soft tissues from the continent. Additionally, it represents the only confirmed record of lacustrine ostracods from the continental interior of Antarctica for the entire Neogene. This has important implications for climatic conditions in the Dry Valleys region during the Middle Miocene, prior to the establishment of much colder conditions after 14 Myr ago (Lewis et al. 2007, in press).

2. PALAEOLAKE BOREAS ENVIRONMENT
Palaeolake Boreas developed in a small basin (1.4×10⁴ m) behind a glacial moraine (Ashworth et al. 2007). Its sediments have a total thickness of approximately 0.75 m and are dominated in the lower part of the succession by interlaminated moss peat and diatomaceous silts, and in the upper part by diatomaceous silts. The former record repeated fluctuations in water level during a lowstand phase, and the latter reflect a prolonged highstand phase (Ashworth et al. 2007). They are conformably overlain by sands and gravels with a coarsening-upwards
motif, indicating final infill and burial of the basin by a prograding alluvial fan complex. The lacustrine sediments have been correlated with a comparable moraine-dammed lake sequence 3 km to the east which has yielded an $^{40}\text{Ar}/^{39}\text{Ar}$ age of 14.11 \pm 0.11 Myr ago (Lewis et al. 2007), later recalculated to 14.07 \pm 0.05 Myr ago (Lewis et al. in press).

Palaeolake Boreas had an indigenous freshwater biota that included mosse, diatoms and ostracods; beetles inhabited the hinterland (Ashworth et al. 2007). Geo-morphologic, stratigraphic and chronological evidence indicates that a climate supporting cold-based glaciation has persisted in the region from 14 Myr ago to the present. The lake therefore preserves the last vestige of a warmer, tundra fauna and flora (Lewis et al. 2007).

The mosses correspond to shallowing events and include the semi-aquatic Drepanocladus, some modern species of which thrive in mineral- and nutrient-rich mires and extend southward to Tierra del Fuego, the Falkland Islands and Kerguelen Island (Ashworth et al. 2007). In addition to semi-aquatic forms, two species of terrestrial haplolepoid mosses have been identified and were presumably washed or blown in from the margins. The diatoms are abundant and well preserved. Those in the moss-rich lower part of the sequence comprise colonial benthonic alkaliphilous species. They are replaced higher in the sequence by a different assemblage of benthonic taxa, and finally by a suite of acidophilous planktonic forms indicating deepening and increasing acidification of the lake (Lewis et al. in press). The presence of a diversified diatom flora implies that the water body was both permanent and seasonally ice free, and that the lake derived considerable nutrients from the catchment (Ashworth et al. 2007).

Ostracods occur at a single level in a 4 cm thick bed of interlaminated moss peat and diatom-bearing silt (see Lewis et al. in press). They are abundant and indicate a temporarily favourable environment for colonization by benthic crustaceans.

3. SYSTEMATIC PALAEOENTHOLOGY

Order: Podocopa Sars 1866
Suborder: Cypridocopina Jones 1901
Superfamily: Cypridioidae Baird 1845
Family: Candonidae Kaufmann 1900
Genus: Lacalgida gen. nov.

Derivation of name: Latin Lacus, lake; + algidus, cold.

Gender: feminine.

Diagnosis: Carapace elongate sub-reiniform in lateral view, approximately twice as long as high. First antenna elongate, distally tapering; comprises five podomers, the proximal two being relatively large. Labrum broadly triangular, convex and with rounded corners. Labium is elongate, narrowly triangular, with its short (anterior) side a little behind the posterior edge of the labrum; the atrium oris occupies a narrow, sediment-filled area between labium and labrum (figure 1g,h). Only the distal parts of the mandibular endopods are preserved, the left one with two small terminal setae projecting towards the atrium oris, the right one apparently with its distal end broken (figure 1b). The first maxillae, positioned either side of the atrium oris, each have three endites on the basipod and a short endopod (dislodged on left side), with at least two terminal setae evident on the third endite on the left side (figure 1b,c). The second maxilla is represented only by a taping, posteriorly projecting endopod on each side (figure 1b,c). The sixth limbs are stout, with the distal parts broken away; on the left side only the basipod is visible, while on the right side the basipod and the proximal podomere of the endopod are preserved (figure 1b,c). Small lobes just behind and exsagittal to the sixth limbs are taken to represent the proximal parts of the seventh limbs (figure 1b), which would normally be positioned well within the carapace, alongside the posterior part of the body of the animal. Posterior to these is a pair of large, elongate genital lobes (figure 1i), which together with the form of the fifth limbs indicate that the animal is female. Posteriorly, there is a pair of stout furcal rami with their distal ends broken off (figure 1i).

Holotype: A carapace, approximately 0.6 mm long, with soft anatomy (figure 1b–e, g–i). The specimen, the best preserved in our material, appears to show adult characteristics and has a full complement of limbs and well-developed genital lobes, but is smaller than our largest specimen and therefore possibly represents the penultimate (A-1) instar. Oxford University Museum of Natural History, Oxford, England, OUMNH NS.1.

Material: Thirty-eight valves and carapaces including the holotype (OUMNH NS.1–NS.38), of which two preserve recognizable soft parts and several appear to show degraded soft tissues.

Locality and stratigraphy: Middle Miocene (Langhian Stage), Palaeolake Boreas, western Olympus Range, between Mount Boreas and Mount Aeolus (see Lewis et al. 2007, figure 1), 600 m above the floor of the McKelvey Valley (at 1425 m altitude), Antarctica.

The carapace is elongate sub-reiniform in lateral view and approximately twice as long as high (length ranges 0.46–0.82 mm, height ranges 0.26–0.50 mm), with maximum height at or a little behind mid-length (figure 1a). In dorsal view the carapace is moderately inflated, with rounded anterior and posterior extremities and with maximum width at about mid-length. The left valve is slightly larger than the right valve. The calcified inner lamella is narrow and is the broadest posteriorly (figure 1c). Muscle scars are not visible.

The first antenna (preserved only on the right side) is elongate, distally tapering and comprises five visible podomers, of which the proximal two are relatively large (figure 1b,d). A pair of small setae just posterior to the first antenna may belong to that limb. The second antenna is represented on each side by a large, tubular structure that may be the basis; the endpod is missing on both sides (figure 1b,d). The labrum is convex, broadly triangular shaped, with rounded corners; behind it the labium is elongate, narrowly triangular, with its short (anterior) side a little behind the posterior edge of the labrum; the atrium oris occupies a narrow, sediment-filled area between labium and labrum (figure 1g,h). Only the distal parts of the mandibular endopods are preserved, the left one with two small terminal setae projecting towards the atrium oris, the right one apparently with its distal end broken (figure 1b). The first maxillae, positioned either side of the atrium oris, each have three endites on the basipod and a short endopod (dislodged on left side), with at least two terminal setae evident on the third endite on the left side (figure 1b,c). The second maxilla is represented only by a taping, posteriorly projecting endopod on each side (figure 1b,c). The sixth limbs are stout, with the distal parts broken away; on the left side only the basipod is visible, while on the right side the basipod and the proximal podomere of the endopod are preserved (figure 1b,c). Small lobes just behind and exsagittal to the sixth limbs are taken to represent the proximal parts of the seventh limbs (figure 1b), which would normally be positioned well within the carapace, alongside the posterior part of the body of the animal. Posterior to these is a pair of large, elongate genital lobes (figure 1i), which together with the form of the fifth limbs indicate that the animal is female. Posteriorly, there is a pair of stout furcal rami with their distal ends broken off (figure 1i).
Lacalgida avia can be assigned to the Cypridoidea based on the morphology of the fifth limb endopod (unsegmented), the single pair of walking legs (sixth limb) and the stout furcal rami. Of the four cypridoidean families (Horne et al. 2002), an assignment to the notodromadids is unlikely because they invariably have relatively high, not elongate, carapaces, often with flattened ventral margins. Affinity to the ilyocyprids is similarly ruled out because they have characteristically sub-rectangular carapaces and a fifth limb endopod with two or three segments. Assignment to the Candonidae is slightly more likely based on overall carapace shape, the relatively large fifth limb palps and the elongate genital lobes; indeed the Antarctic species is quite similar in general appearance to smaller members of the candonid genus Fabaeformiscandona Krstic´ 1972 (see Meisch 2000). However, owing to a lack of the adductor muscle scars or knowledge of the distal parts of the limbs, the possibility that the species belongs to the Cyprididae cannot be ruled out. Both the Candonidae and

Figure 1. (a–e, g–i) Scanning electron micrographs of Lacalgida avia: (a) right lateral view of carapace, OUMNH NS.2, x82.5; (b,d,e,g,i) holotype with near complete complement of appendages and soft anatomy, OUMNH NS.1; (b) ventral view (stereo pair), x84; (d) anterior view (stereo pair) showing the first and second antenna (visible on the right side), mandible and labrum, x100; (e) oblique ventral view of labrum, mandible and second maxilla (stereo pair), the basipod of the latter with three terminal endites, x160; (g) oblique ventral view of anterior (stereo pair), x160; (h) ventral view of anterior (stereo pair) with first and second antennae visible on the right side, x160; (i) oblique ventral view of posterior (stereo pair) with endopods of sixth and seventh walking appendages, genital lobes and furcal rami, x160. (c) right valve, internal lateral view, OUMNH NS.3, x94; (f) modern female specimen of the candonid ostracod Physocypris nipponica Okubo 1990, ventral view, x81. This specimen, from the southern basin of Lake Biwa, Shiga Prefecture, Japan, is used for a simple comparison of soft anatomy and no close relationship to L. avia is inferred (Abbreviations: a1, first antenna; a2, second antenna; a5–a7, fifth to seventh appendages, a5 (en), a6 (en), endopods; ma, mandible; ml, first maxilla; la, labrum; fu, furcal ramus; rv, right valve; lv, left valve; il, inner lamella; gl, genital lobe; en, endite.).
Cyprididae include swimming (nektobenthonic) and non-swimming (benthonic) taxa. The quality of preservation of the first and second antenna of our specimens is not good enough to determine whether or not the species had swimming setae, but on the basis of the relatively elongate carapace morphology, it is more likely that it was benthonic and a non-swimmer. The living Candonidae include some terrestrial and semi-terrestrial representatives, found in such habitats as damp leaf litter and mosses (Pinto et al. 2005); by its small size and carapace shape _L. avia_ quite strongly resembles the modern Brazilian terrestrial candonine _Caaporacandona_ (Pinto et al. 2005). In this context, the association of _L. avia_ with mosses is intriguing, but without full knowledge of its appendage morphology it is impossible to determine the precise habitat and mode of life.

4. OSTRACOD TAPHONOMY
The body and appendages of ostracods are highly susceptible to post-mortem decay. Examples of fossil ostracods preserving soft anatomy are scarce, but are known from the Silurian through to the Quaternary (see Smith 2000). They are preserved in a variety of ways including as void fills in calcite (e.g. Siveter et al. 2003, 2007) and as replacements and coatings in silica (Leggitt 2006) and apatite (e.g. Bate 1972). The only previously reported high-latitude example (from Alaska) differs markedly from that described here in that the soft anatomy is mumified (Schmidt & Sellman 1966).

The ostracods from Palaeolake Boreas are preserved in iron oxide (presumed to be goethite), frequently with detrital minerals adhering to their surfaces. They include isolated valves, empty carapaces and carapaces enclosing soft anatomy. One specimen preserves a near full complement of soft parts (figure 1): several others preserve partial details, and many contain structures interpreted to be remnants of degraded soft tissue (cf. Smith 2000). The style of preservation is broadly comparable with that of silicified (Leggitt 2006) and phosphatized ostracod faunas (Smith 2000). It consists of a combination of fine-scale replacement and crude coatings (overgrowths), both styles typically occurring within individual specimens and in close proximity. Void fills are also important and result in excessive apparent cuticle thicknesses, particularly for appendages and setae. Locally, a thin gap (less than 1 μm) occurs between replaced tissues and any external coating, suggesting the epidermis to have remained unmineralized. Similarly, the carapace exhibits evidence of differential mineralization, with certain layers (see Yamada et al. 2004) not being subject to mineralization.

The fidelity of preservation of the Palaeolake Boreas ostracods varies considerably between specimens and is interpreted to be dependent on the timing of mineralization relative to decay, the extent of replacements relative to coatings, the coarseness of the mineral microfabrics and the quantity of obscuring detrital materials. Exceptionally, sub-micrometer-scale details such as setae and wrinkles are preserved as external moulds by coarse-grained coatings, but such resolution is typically associated with replacements by microcrystalline fabrics.

The goethite exhibits a variety of crystal habits, including tabular, crudely prismatic and globular aggregates, as well as skeletal crystals and moulds of cubo-octahedra. The latter two suggest the goethite to be secondary after another, presumably ferroan, phase. Locally, the goethite occurs in association with synchronous accessory gypsum rosettes. Goethite and gypsum are common products of pyrite oxidation (weathering) in the presence of calcium carbonate, here present as remnants of biogenic calcite in the ostracod carapaces having survived pyritization.

Broadly analogous mineralization of arthropods occurs in the Lower Cambrian Chengjiang Lagerstätte (Gabott et al. 2004), though there the original pyrite microfabrics are more faithfully pseudo-morphed by the iron oxides. Pyritization requires animals to be buried in sediment with a low concentration of organic carbon and a high concentration of reactive iron (Briggs et al. 1991, 1996). This ensures that bacterial sulphate reduction, and hence pyrite precipitation, is localized at the decaying carcass rather than being dispersed throughout the sediment. Floral evidence indicates that the shallow waters of Palaeolake Boreas may have had elevated concentrations of dissolved minerals, particularly during low stands; modern aquatic environments occupied by Cypridoidea include those with high sulphate concentrations (Marmonier et al. 2005). It is postulated that partial dissolution of the ostracod carapaces in the increasingly acidic waters created a favourable microenvironment for the pyritization of soft parts by locally increasing the pH (cf. Raiswell 1997).

5. PALAEOENVIRONMENTAL SIGNATURE OF THE OSTRACOD FAUNA
The modern Dry Valleys form the largest relatively ice-free area (approx. 4800 km²) in the Antarctic. They are characterized by perennally ice-covered lakes, ephemeral streams, wide areas of exposed soil, low temperatures (mean annual temperatures are in the range −14.8 to −30.0°C; see Doran et al. 2002), limited precipitation and salt accumulation. The lakes generally lack outlets and their levels are controlled by melt water influx. Typically, they are ice covered to a depth of 3–6 m (sometimes greater; see Doran et al. 2003), thin enough to allow photosynthesis to occur. They support ecological communities dominated by micro-organisms (Doran et al. 2004), especially diatoms, small invertebrates including nematodes and tardigrades, and mat-forming cyanobacteria. Copepod crustaceans have been observed in Lake Joyce (Roberts et al. 2004).

The exceptionally well-preserved ostracods from Palaeolake Boreas include a range of carapace sizes (lengths approx. 0.4–0.8 mm). This indicates that several instars were living in the lake at a single time (‘horizon’) and were not transported in from elsewhere, for example by winds or streams, or reworked from older deposits. Living ostracods have not been recorded from modern lakes of the Dry Valleys. The most southerly modern lacustrine ostracod communities are those of the South Orkney Islands (Pugh et al. 2002; Dartnell 2005), at latitude 60°35′ S, where, the annual mean temperature is approximately 0°C, with summer maxima reaching 12°C. Lake temperatures are typically above freezing throughout the year (see Quayle et al. 2002). Although lacustrine ostracods can survive for short periods below temporary ice cover, their initial colonization requires that the lake, or an adjacent hydrologically linked water
body such as a river, be open to the atmosphere. Thus, those from Palaeolake Boreas unequivocally demonstrate the water body to have been exposed for colonization by benthic ostracods. They signal a Middle Miocene environment considerably warmer than the modern Dry Valleys (cf. Doran et al. 2002), and one which is consistent with a decrease in annual mean temperature, between the Middle Miocene and present, of some 30°C (Lewis et al. 2007).

The diatom record indicates that Palaeolake Boreas was long lived (Ashworth et al. 2007). Restriction of the ostracods to a single horizon implies that their colonization was serendipitous, and that the lake was only temporarily viable. This is consistent with the ostracod morphology, which suggests a benthonic mode of life. The monospecific assemblage may signal geographical isolation and difficulty of colonization, a situation noted for other isolated lakes (e.g. see Holmes et al. 1998). There is little evidence for the occurrence of a continental Antarctic ostracod fauna during the Neogene: the only other known occurrence of putatively non-marine ostracods of this age is in the Meyer Desert Formation, Antarctica (Horne et al. 2002), and one which is consistent with a decrease in annual mean temperature, between the Middle Miocene and present, of some 30°C (Lewis et al. 2007).

The monospecific assemblage may signal geographical isolation and difficulty of colonization, a situation noted for other isolated lakes (e.g. see Holmes et al. 1998). There is little evidence for the occurrence of a continental Antarctic ostracod fauna during the Neogene: the only other known occurrence of putatively non-marine ostracods of this age is in the Meyer Desert Formation, Antarctica (Horne et al. 2002), and one which is consistent with a decrease in annual mean temperature, between the Middle Miocene and present, of some 30°C (Lewis et al. 2007).

The ostracods were discovered by Richard Thomasson, an undergraduate student, during screening of the sediments in Ashworth’s laboratory at North Dakota State University. We thank David Riley, Alex Page and Rob Wilson (Leicester) for help with scanning electron microscopy, Lloyd Peck and Pete Convey (BAS) for information about ostracod life sciences and biology of Quaternary and living ostracod species from estuaries and mudflats near Dartmouth, Nova Scotia, Canada. In Ostracoda in the earth and life sciences (eds P. Jones & K. G. McKenzie), pp. 503–514. Rotterdam, The Netherlands: Balkema.

REFERENCES

Baird, W. 1845 Arrangement of the British Entomostraca, with a list of species, particularly noticing those which have as yet been discovered within the bounds of the club. Trans. Berwick. Nat. Club 2, 145–158.

Bate, R. H. 1972 Phosphatized ostracods with appendages from the Lower Cretaceous of Brazil. Palaeontology 15, 379–393.

