A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities

Waka Fujisaki1,* and Shin’ya Nishida2

1National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
2NTT Communication Science Laboratories, NTT Corporation, 3-1, Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan

The human brain processes different aspects of the surrounding environment through multiple sensory modalities, and each modality can be subdivided into multiple attribute-specific channels. When the brain rebinds sensory content information (‘what’) across different channels, temporal coincidence (‘when’) along with spatial coincidence (‘where’) provides a critical clue. It however remains unknown whether neural mechanisms for binding synchronous attributes are specific to each attribute combination, or universal and central. In human psychophysical experiments, we examined how combinations of visual, auditory and tactile attributes affect the temporal frequency limit of synchrony-based binding. The results indicated that the upper limits of cross-attribute binding were lower than those of within-attribute binding, and surprisingly similar for any combination of visual, auditory and tactile attributes (2–3 Hz). They are unlikely to be the limits for judging synchrony, since the temporal limit of a cross-attribute synchrony judgement was higher and varied with the modality combination (4–9 Hz). These findings suggest that cross-attribute temporal binding is mediated by a slow central process that combines separately processed ‘what’ and ‘when’ properties of a single event. While the synchrony performance reflects temporal bottlenecks existing in ‘when’ processing, the binding performance reflects the central temporal limit of integrating ‘when’ and ‘what’ properties.

Keywords: vision; audition; touch; time; binding

1. INTRODUCTION

The human sensory system perceives different aspects of the surrounding environment through multiple channels. Multiple channels imply different sensory modalities (e.g. vision, audition and touch), and attribute-specific processing mechanisms within each modality (e.g. colour and shape processing pathways in vision) (Zeki 1993). For perception of a coherent world, the brain rebinds input signals through different sensory channels into representations of original multi-attribute objects and events.

Spatial coincidence and temporal coincidence are two representative cues for binding different attributes.1 In past studies of cross-attribute binding, particularly those on vision, greater emphasis has been placed on spatial coincidence. In fact, the most influential theory of visual cross-attribute binding, the feature integration theory (Treisman & Gelade 1980; Treisman 1996, 1999) postulates that cross-attribute binding is accomplished by a serial scan of a map of spatial locations by a ‘window of attention’. The theory’s main hypothesis is that binding ‘what’ (an attribute content) to ‘where’ (a spatial location) through a serial scan of locations also binds the individual ‘what’. Just as input signals detected at the same location are likely to belong to the same object, input signals detected synchronously are likely to belong to the same event. Although temporal synchrony is considered to be a relatively minor cue for within-attribute binding of spatially separate visual signals (Leonards et al. 1996; Alais et al. 1998; Lee & Blake 1999; Motoryoshi & Nishida 2001), it is a critical clue for binding signals across different attributes, in particular across different modalities (Munhall et al. 1996; Sekuler et al. 1997; Holcombe & Cavanagh 2001; Spence 2007). A good example is an audience binding audio–visual signals through temporal synchrony even when there is a mismatch in spatial location (ventriloquist effect) (e.g. Warren et al. 1981; Alais & Burr 2004). Compared with our understanding of binding from spatial coincidences, however, we know very little about the mechanisms underlying cross-attribute binding from temporal coincidences.

A fundamental question about cross-attribute/modality processing is whether it is mediated by peripheral neural mechanisms specific to each attribute combination, or by a central universal process common to all attribute combinations. In line with the notion of peripheral-specific processing, brain activities responsible for cross-modal/attribute interactions have recently been observed at very short latency and/or in peripheral sensory areas (Lebib et al. 2003; Schroeder & Foxe 2005; van Wassenhove et al. 2005; Mishra et al. 2007; Seymour et al. 2009). These findings suggest that cross-attribute temporal binding might also be processed separately for each combination of attributes/modalities in distributed networks involving attribute-specific cortical areas. On the
other hand, just as the feature integration theory assumes for cross-attribute binding from spatial coincidences (Treisman & Gelade 1980; Treisman 1996, 1999), a centralized attention-driven process may play a critical role in cross-attribute binding from temporal coincidences.

A promising behavioural approach to the solution of this problem is to measure the processing speed of cross-attribute binding. If the underlying mechanisms are peripheral and specific, the binding speed is expected to be relatively high and/or variable among different attribute combinations. On the other hand, if the underlying mechanism is central and universal, the binding speed is expected to be relatively low and invariant against changes in attribute combination.

The processing speed of temporal binding can be psychophysically estimated from the upper temporal limit in judging the temporal relationship between two stimulus sequences. The highest temporal frequency for discriminating in-phase from reversed-phase stimulus pairs is considerably high for within-modal comparisons, in particular when peripheral phase sensors, such as visual motion detectors (Adelson & Bergen 1985), are likely to be involved. The limit reaches approximately 30 Hz for vision and even higher frequencies for audition (Victor & Conte 2002; Fujisaki & Nishida 2005). In comparison with these, the reported temporal limits for cross-attribute phase judgements are much lower (less than approx. 10 Hz) (Holcombe & Cavanagh 2001; Arnold 2005; Fujisaki & Nishida 2005, 2007, 2009; Bartels & Zeki 2006; Amano et al. 2007; Holcombe & Judson 2007). One could interpret these low temporal limits as evidence for the involvement of centralized attention-driven processes (He et al. 1997; Holcombe & Cavanagh 2001; Holcombe 2009).

However, from the viewpoint of peripheral-specific processing, the low temporal limits could be caused by sparse cortical connections between the attribute-specific areas, or by differences in neural processing latency between different attributes (Bartels & Zeki 2006; Seymour et al. 2009). Apparently in agreement with the peripheral-specific hypothesis, there is a significant variation, ranging between 2 and 10 Hz, in the reported temporal limits of cross-attribute temporal judgements.

A critical problem with previous data is that the temporal limits of cross-attribute binding were not collected using the same tasks but using two different temporal phase-discrimination tasks, i.e. a binding task (Moutoussis & Zeki 1997; Holcombe & Cavanagh 2001; Arnold 2005; Bartels & Zeki 2006; Amano et al. 2007; Holcombe & Judson 2007) and a synchrony task (Van de Par & Kohlrausch 2000; Fujisaki et al. 2006; Fujisaki & Nishida 2009). In both tasks, participants were asked to discriminate whether two regular repetitive sequences, presented at different locations or in different modalities, were in-phase or reversed-phase (180° anti-phase), but there were a slight change in the stimulus structure and a significant difference in the required task. Since different attribute combinations have been used for the two tasks, it remains obscure whether the temporal limit variation depends on the attribute combination or on other factors, including the task type.

The present study therefore compared the temporal limits of the binding and synchrony tasks for a wide range of attribute and modality combinations. Figures 1 and 2 illustrate examples of the two tasks used in our experiment. In the binding task, each sequence was a repetitive alternation of two attribute values, such as red and green, and high- and low-pitch sound. The alternation was always synchronized between the two sequences, but the feature pairing was changed between the two phase conditions. The participants had to judge which features were presented simultaneously, e.g. whether the pitch was high or low when red was presented. In the synchrony task (synchrony–asynchrony discrimination task), each stimulus sequence contained brief pulses at a given repetition rate. Participants had to judge whether the pulses of the two sequences, for instance visual flicker and auditory flutter, were synchronous or asynchronous. In addition to measuring the temporal limits of the two tasks for cross-attribute and cross-modality conditions, we also examined a few within-attribute binding and synchrony judgements in order to test the idea that the temporal judgements between the same visual attributes, but across long spatial separations, are mediated by an attention-driven process (Battelli et al. 2001; Aghdaee & Cavanagh 2007; Holcombe 2009).

Our main finding is that the temporal limit was very low and surprisingly similar (2–3 Hz) when and only when the task was binding and the comparison was across different attributes of the same or different modalities. This suggests that cross-attribute temporal binding is not mediated by a peripheral mechanism specific to each attribute combination but by a common slow central process that presumably binds ‘what’ (an attribute content) and ‘when’ (a temporal location) to find the binding of synchronous ‘what’.

2. MATERIAL AND METHODS

(a) General

See supplementary methods for further details about issues described in this section.

Participants were the two authors, and seven paid volunteers.

Visual stimuli were presented on a CRT monitor. One or two disc-shaped stimuli, each subtending 3.09° in diameter, were presented on a uniform yellow background. A white fixation bull’s eye was presented 1.6° above or below the centre of the monitor. The position of the fixation point was switched every trial to reduce retinotopic adaptation effects. Auditory stimuli were presented via headphones. Tactile stimuli were presented via two vibration generators.

One stimulus sequence lasted 6 s with 2-s cosine ramps both at the onset and offset of the stimulus. The relative phase of the two sequences started with a random phase, gradually shifted to the intended phase over the initial 2 s, and then kept that phase for the remaining 4 s.

(b) Stimuli for the binding task

For the binding task, we used five alternation sequences (figure 1b), V_red, a red and green colour change in a circular disc; V_green, luminance increment and decrement in a circular disc; V_red, 45° clockwise and anticlockwise tilts from the vertical of a grating shown in a circular disc; A, high-pitch (622.26 Hz) and low-pitch (261.03 Hz) of a complex (triangular wave) tone; T, vibrations (40 Hz) given to the right
and left index fingers. Combinations of these five resulted in
10 pairs: seven cross-modality pairs, and three visual cross-
attribute pairs. In addition, we tested three visual within-
attribute pairs (figure 1c). For within-vision comparisons,
two visual sequences were presented in two discs on both
sides of fixation with an inter-disc separation of 15.4°
(figure 1a). It has been suggested that this separation is
long enough to tap a high-level visual mechanism (Aghdaee &
Cavanagh 2007).

We presented a pair of stimulus sequences while modulat-
ing each sequence by a square wave. This means two attribute
values alternately appeared at a given rate. One wavelength
consisted of appearances of two attributes with two transitions
in the attribute value. The time course of an example pair of
stimulus sequences (colour–pitch combination) is shown in
figure 1d. The temporal phase relationship between the two
sequences was either in-phase or 180° reversed-phase. In
both cases, the two sequences always changed synchronously,
but the value combination was reversed between the two
phase conditions. We arbitrarily determined one of the two
value combinations as in-phase, regarding the other as
reversed-phase. These two stimulus conditions were maxi-
mally separated in phase from each other, and neither had
any physical-binding ambiguity.

Figure 1. Stimuli used for the temporal binding task. (a) Spatial configuration of a visual stimulus (colour (V_{col}) orientation
(V_{ori}) combination). (b) Five attributes used for the binding experiment. V_{col}, visual colour change; V_{lum}, visual luminance
change; V_{ori}, visual orientation change; A, auditory pitch change; T, tactile-stimulated hand (finger) change. (c) Thirteen attribute
combinations tested. Three within-attribute, three cross-attribute and seven cross-modality combinations. A quartet of
icons represents the ‘in-phase’ pairing of the attribute combination. (d) Schematic illustrations of stimulus time courses for
the condition where the attribute combination comprised colour (V_{col}) and auditory pitch (A), and the temporal frequency
was 1 Hz. Each sequence was modulated by a square wave. This resulted in two attribute values (i.e. red, green) alternated
in turns at a given rate. Each sequence lasted 6 s with 2-s cosine ramps both at the onset and at the offset of the stimulus.
The phase lag between two attributes started with a random value and gradually shifted to the intended phase over the initial
2 s. These manipulations were done to prevent the participants from making their judgement based on the onset and offset
of the sequences. Top: ‘in-phase’ condition, where red appears when auditory pitch is low (shown by lime-green notes). Bottom:
‘reversed-phase’ condition, where red appears when pitch is high (shown by magenta notes).
For the synchrony task, we used four pulse sequences defined by two visual attributes, one audio attribute and one tactile attribute (figure 2a). \(V_{\text{col}} \), a colour change of a circular disc from yellow to equiluminant red; \(V_{\text{lum}} \), luminance increment of a circular disc; \(A \), an amplitude-modulated complex tone pip; \(T \), a vibration given to the right index finger. Since an orientation change is inevitably accompanied by local luminance changes, we did not use orientation for the synchrony task. Combinations of the four attributes resulted in six pairs: five cross-modality pairs, and one visual cross-attribute pair. In addition, we used two visual within-attribute pairs (figure 2b).

We used different waveforms for binding and synchrony tasks to obtain the best temporal frequency limit for each task (see electronic supplementary material for a related control experiment). The temporal waveform for the synchrony task was a repetitive pulse train (figure 2c). One wavelength included only one pulse. Each pulse kept a single attribute value, rather than alternating between the two values. Top: ‘in-phase’ condition, where red appears in synchrony with low pitch. Bottom: ‘reversed-phase’ condition, where red and low pitch appear asynchronously.

(c) **Stimuli for the synchrony task**
For the synchrony task, we used four pulse sequences defined by two visual attributes, one audio attribute and one tactile attribute (figure 2a). \(V_{\text{col}} \), visual colour change; \(V_{\text{lum}} \), visual luminance change; \(A \), auditory pitch change; \(T \), tactile-stimulated hand (finger) change. (b) Eight attribute combinations. Two within-attribute, one cross-attribute and five cross-modality combinations. (c) Schematic illustrations of stimulus time courses for the condition where the attribute combination comprised colour (\(V_{\text{col}} \)) and auditory pitch (\(A \)), and the temporal frequency was 1 Hz. Each sequence was a pulse train. Each pulse train kept a single attribute value, rather than alternating between the two values. Top: ‘in-phase’ condition, where red appears in synchrony with low pitch. Bottom: ‘reversed-phase’ condition, where red and low pitch appear asynchronously.

(d) **Procedures**
We measured the temporal limits of the binding and synchrony tasks for various combinations of attributes. The participant was instructed to judge the combination of attribute values that were presented at the same time (binding task), or to judge synchrony between the two sequences (synchrony task). Although the two tasks were subjectively different, in terms of physical stimulus, both tasks were discriminating of whether two repetitive sequences were in-phase or reversed-phase.

In each trial, a pair of stimulus sequences was presented. The participant had to make a two-alternative forced response about the relative phase. Feedback was given after each response by the colour of the fixation marker. For each of the 21 stimulus-task conditions (13 stimulus combinations for binding and eight for synchrony), the proportion correct was estimated at least at six temporal frequencies, which were chosen from the frequencies ranging from 1 to 16 Hz in a half-octave step. The proportion correct at a given frequency was computed from 20 to 40 judgements. The obtained psychometric function was fit by a logistic function by the maximum likelihood method for estimation of the 75 per cent correct point (see also electronic supplementary material).

3. RESULTS
For both binding and synchrony tasks, we measured the performance of binary phase discrimination as a function of temporal frequency and computed the 75 per cent correct point to estimate the threshold frequency. An example of the psychometric functions is shown in
Figure 3. The temporal limits of binding and synchrony tasks. (a, b) Examples of the obtained psychometric functions. The proportion correct (average over nine participants) of (a) binding and (b) synchrony judgement is plotted as a function of the temporal frequency (Hertz). The threshold temporal frequency was estimated from the 75 per cent point. Black circles and solid fitting curve, $V_{\text{col}}-\text{A}$ condition; white squares and dotted fitting curve, $\text{A}-T$ condition. (c) The threshold temporal frequency was estimated for each participant and averaged over the nine participants. The horizontal axis represents the combination of attributes. Blue indicates within-attribute comparisons, green cross-attribute ones and pink cross-modality ones. White squares indicate the results obtained in the binding experiment and black circles indicate the results obtained in the synchrony experiment. Error bar: ±1 s.e.

In figure 3a, b, and the estimated temporal limits are shown in figure 3c. The data in figure 3c are geometric averages over nine participants. Individual data were similar to the group average (electronic supplementary material, figure S1). Electronic supplementary material, tables S1–S3, summarizes the results of paired t-tests.

First, consider the results of cross-attribute conditions (right 10 conditions in figure 3c). Regardless of visual cross-attribute combinations ($V_{\text{col}}^{-}V_{\text{lum}}^{-}V_{\text{ori}}^{-}V_{\text{lum}}^{-}V_{\text{ori}}^{-}$) or cross-modal conditions ($V_{\text{col}}^{-} \text{A}, V_{\text{col}}^{-}T, V_{\text{lum}}^{-} \text{A}, V_{\text{lum}}^{-}T, V_{\text{ori}}^{-} \text{A}, V_{\text{ori}}^{-}T, \text{A}^{-}T$), there was clear and systematic dissociation between the binding and synchrony tasks. When compared between the two tasks, the temporal limit was lower for the binding task than for the synchrony task for all the combinations where comparison was possible. When compared between the attribute combinations within each task, while the temporal limit of the synchrony task showed a large variation (specifically, the limit was higher for $V_{\text{col}}^{-}V_{\text{lum}}^{-}$ and $\text{A}^{-}T$) than for $V_{\text{col}}^{-} \text{A}, V_{\text{col}}^{-}T, V_{\text{lum}}^{-} \text{A}$ and $V_{\text{lum}}^{-}T$), the temporal limit of the binding task was always 2–3 Hz and showed little variation among stimulus conditions. The present data are consistent with the previous data obtained under conditions similar to the current $V_{\text{lum}}^{-} \text{A}, V_{\text{lum}}^{-}T$ and $\text{A}^{-}T$ synchrony conditions (Fujisaki & Nishida 2005, 2009) and the current $V_{\text{col}}^{-}V_{\text{ori}}^{-}$ binding condition (Holcombe & Cavanagh 2001). The temporal limit of cross-attribute binding for another attribute combination (colour and motion) is also around 3 Hz (Arnold 2005; Bartels & Zeki 2006; Amano et al. 2007). The previous data however are too fragmentary, and the present data are the first to show that the temporal limit of cross-attribute binding is surprisingly similar for a wide range of attribute combinations, while that the synchrony limit is higher and more variable.

For visual within-attribute conditions ($V_{\text{lum}}^{-}V_{\text{lum}}^{-}V_{\text{col}}^{-}V_{\text{ori}}^{-}V_{\text{ori}}^{-}$), the temporal limit was $5–9$ Hz, and there was little difference between the binding and synchrony tasks. These results are consistent with the previous data obtained under conditions similar to the

current $V_{\text{sum}} - V_{\text{sum}}$ synchrony condition (Battelli et al. 2001; Victor & Conte 2002; Aghdaee & Cavanagh 2007), and the current $V_{\text{cri}} - V_{\text{cri}}$ synchrony condition (Motoyoshi 2004). The present study further showed that within-attribute conditions were critically different from cross-attribute conditions in that the temporal limits of the within-attribute conditions were nearly the same for the binding and synchrony tasks, and that the temporal limits of the within-attribute binding were higher than those of cross-attribute binding.

To check the robustness of our main finding of constant temporal limit (2–3 Hz) for cross-attribute binding tasks, we carried out several additional experiments (see electronic supplementary materials for details). First, stimulus intensity had little effects on the cross-attribute binding limit (electronic supplementary material, figure S2). Second, stimulus waveform (pulse or square wave) had little effects on the cross-attribute binding limit (electronic supplementary material, figure S3). Third, the low temporal limit of cross-attribute binding could not be ascribed to potential shifts of apparent timing between different stimulus attributes (electronic supplementary material, figure S2). Fourth, matching the apparent spatial locations of the audio–visual signals had little effects on the temporal binding limit. Fifth, using different auditory attributes other than pitch (amplitude modulation, left/right ear alternation) had little effects on the temporal binding limit (electronic supplementary material, figure S5). Sixth, the temporal binding limit of cross-attribute binding remained to be 2–3 Hz even when it was measured under more natural binding situations with regard to spatial alignment (Spence et al. 2003) and attribute combination (e.g. Maeda et al. 2004; electronic supplementary material, figure S6). In addition, we obtained preliminary data suggesting that binding within the same attribute, but across different attribute values is considerably slow.

In conclusion, as far as we have tested, temporal limit of 2–3 Hz was a very robust property of cross-attribute binding.

4. DISCUSSION

The present data clarify that the limit of the binding task is always 2–3 Hz. This was the case not only for audio–visual and visuo–tactile combinations for which the synchrony limit was 4–5 Hz, but also for luminance–colour and audio–tactile combinations for which the synchrony limit was 7–9 Hz. A common binding limit suggests that the temporal bottleneck is a universal process, and not a stimulus-specific one. The present findings therefore provide clear psychophysical evidence that cross-attribute temporal binding of any combination, regardless of whether the combination is within-modal or cross-modal, is mediated by a universal slow central process.

In contrast, the temporal limit of cross-modal synchrony judgement is variable against a change in modality combination. This suggests that the mechanisms underlying cross-attribute synchrony judgements reside in more peripheral stages than those underlying cross-attribute temporal binding judgements. Nevertheless, the following three properties found in the previous studies led us to believe that cross-modal synchrony perception is not a peripheral phenomenon either. First, the temporal limits of cross-modal synchrony perception are still much lower than the peripheral sensory limits, and second, it is affected little by the attribute combination as long as the modality combination does not change (Fujisaki & Nishida 2005, 2007; Fujisaki & Nishida 2009). For instance, the limit of audio–visual synchrony–asynchrony discrimination is 4–5 Hz regardless of which visual attribute is combined with which auditory attribute, while the visual and auditory limits are in the order of several tens of Hertz (Fujisaki & Nishida 2005, 2007; see also figure 3). Third, attention plays a critical role in the selection of matching features for cross-modal synchrony judgements (Fujisaki et al. 2006; Fujisaki & Nishida 2008). For example, in a visual search task, the search of a sound–synchronized visual target among uncorrelated visual distracters shows a steep increase in the search time with the set size. In contrast, in a selective attention task, interference by surrounding distractors on the audio–visual synchrony task can be completely excluded by pre-cuing of the target location (Fujisaki et al. 2006). It is also possible to select audio–visual matching pair by feature-based attention (Fujisaki & Nishida 2007). These findings suggest that audio–visual synchrony detection is preceded by nearly perfect attentive selection of the spatial position of a visual event. These three properties indicate that cross-modal synchrony perception is also mediated by central processing. Taken together synchrony and binding judgements indicate two central temporal bottlenecks of cross-attribute temporal processing, one in synchrony detection between each combination of modality, and the other in binding any combination of modality and attribute.

Recent studies indicate separate processing of ‘when’ and ‘what’ in the human brain (Nishida & Johnston 2002; Battelli et al. 2007, 2008). Both the synchrony task and binding task are judgements of relative temporal phase. However, the synchrony task primarily requires ‘when’ processing only, while the binding task requires ‘when’ processing and ‘what’ processing as well. As discussed below, the present findings may reflect this difference.

The cross-attribute synchrony task requires participants to match the timings of transient events between different attributes (e.g. between a visual pulse and an auditory pulse). We are proposing that those cross-attribute matching features should be temporally salient in such a way that they are distinctive from pre- and postsignals of the sequence (Fujisaki & Nishida 2007). Since they should be temporally sparse, cross-modal synchrony perception collapses for rapidly changing stimuli (Shipley 1964; Fujisaki & Nishida 2005, 2007; Vatakis et al. 2007). In a cluttered environment, selective attention plays a critical role in selecting matching signals for cross-modal synchrony judgements (Fujisaki et al. 2006; Fujisaki & Nishida 2008). In contrast, when an event is only a salient event within that processing channel, the event timing can be detected nearly automatically through bottom-up processing (Soto-Faraco et al. 2004, 2005). To compare the timing signals, participants do not have to access the information about stimulus contents (‘what’) that cause the timing signals. In fact, the temporal resolution is reduced.
significantly when participants have to access the stimulus contents to select matching features in cross-modal synchrony judgement (Fujisaki & Nishida 2008). Therefore, we conjecture that the temporal resolution of the synchrony judgement is determined by ‘when’ processing factors, such as the temporal accuracy to extract salient changes in each sensory channel and the temporal accuracy to compare the timing of salient changes.

The relationship between the timing signals of salient events (‘when’) is also important for the binding task. The occurrence of the illusory conjunction of colour and motion during perception of illusory asynchrony of the two attributes (i.e. apparent lead of colour oscillation relative to direction oscillation that is robustly observed at 1–2 Hz oscillations) (Moutoussis & Zeki 1997; Nishida & Johnston 2002) indicates that the sensory system uses the same timing signals for the cross-attribute binding and synchrony tasks. However, the binding task also requires participants to access stimulus contents (‘what’), i.e. to judge which combination of attribute values is presented at the same time. The present results indicate that this computation is common to any different attribute combinations, and is slow. This presumably implies that the specific combination of two attributes is not directly encoded, but is recognized through sequential identification of the attribute values that are linked to the same time point. Just as the feature integration theory (Treisman & Gelade 1980; Treisman 1996, 1999) postulates that cross-attribute binding from spatial synchrony is mediated by a slow central process that binds ‘where’ and ‘what’, we consider that cross-attribute binding from temporal synchrony may be mediated by a slow central process that binds ‘when’ and ‘what’.

Figure 4 shows a possible functional structure of cross-attribute temporal processing for synchrony and synchrony-based binding consistent with the present and previous findings (see also Amano et al. 2007; Fujisaki & Nishida 2005, 2008; Nishida & Johnson 2002, 2010). ‘When’ and ‘what’ of a multi-attribute event are processed separately. A synchrony judgement is based on the timings of salient features extracted in ‘when’ processing, while a binding judgement waits for completion of ‘what’ processing and binds outputs from ‘when’ processing with those from ‘what’ processing. The scope of this model is limited to temporal judgements about the relationship between nearly simultaneous signals, not temporal perception in general including duration perception (e.g. van Wassenhove et al. 2008).

The binding of temporal limit might also depend on the speed of switching attention from one attribute to the other (Reeves & Sperling 1986), and/or the speed of binding attributes (Treisman & Gelade 1980), but it remains to be poorly understood whether these processing speeds are independent of attribute and modality. Why the cross-attribute temporal limit is always 2–3 Hz is a fundamental question, and the solution of this question will provide insights into the basic ‘clock’ of high-level sensory recognition.

A well-known exception of slow cross-attribute binding is the colour–orientation binding at the same location—the temporal limit of binding colour and orientation is much higher than 2–3 Hz when they are presented at the same location (Holcombe & Cavanagh 2001; Bodelon et al. 2007). The rapid colour–orientation binding is unlikely to reflect a general facilitation effect of spatial coincidence on cross-attribute binding, since the temporal limit of colour–motion binding is low even when they are presented at the same location (Arnold 2005; Bartels & Zeki 2006). The point is whether there is an
early neural mechanism that directly encodes the relationship between a specific attribute pair. In other words, without such a mechanism, a slow general central process mediates cross-attribute temporal binding. In addition, although dissociation between synchrony and binding judgment has been reported previously (Clifford et al. 2003), it is essentially different from the current dissociation, since that study examined pairs of superimposed colour and orientation with which rapid binding was possible, and the dissociation was concerned not with the upper temporal limit, but with apparent phase delay (see Nishida & Johnston (2010) for our view on possible mechanisms of colour–orientation asynchrony).

For temporal binding within the same attribute (and within the same attribute value, see the last additional experiment in electronic supplementary material), the temporal limit is relatively high and similar between the synchrony and the binding tasks. This suggests that both tasks are mediated by a mechanism that directly encodes the temporal relationship between spatially separated flickers. The mechanism responsible might be related to motion processing that encode spatio-temporal structure of the input pattern. Our finding does not reject the hypothesis that an attention-driven process determines the upper temporal limit of long-range within-attribute comparisons (Battelli et al. 2001; Aghdaee & Cavanagh 2007; Holcombe 2009), but that process is unlikely to be identical to the central cross-attribute binding mechanism we specified.

Some within-attribute bindings are rapid, even though they seem to include rather complex computations. This is presumably because they are also supported by low-level specialized binding mechanisms. Examples are global form perception from integration of local orientation signals (Clifford et al. 2004), and texture edge perception from local orientation difference (Motoyoshi & Nishida 2002). See also a recent relevant review on rapid and slow processing (Holcombe 2009).

Finally, a recent study suggests that a combination of different visual attributes (colour and motion) may be represented in a wide range of cortical areas including V1 (Seymour et al. 2009), whereas the present findings indicate that the main neural circuit for cross-attribute temporal binding should be localized more centrally. Potentially relevant loci include the parietal cortex, which has connections with multiple sensory areas (Lewis & Van Essen 2000) and plays a critical role in spatial cross-attribute binding (Friedman-Hill et al. 1995; Robertson 2003). Particularly of interest is the right inferior parietal lobe (IPL), which has been suggested to be a cortical area responsible for 'when' processing (Battelli et al. 2001, 2007, 2008). It has been reported, for instance, that damage to this area impairs synchrony judgement between spatially separated flickers (similar to the current V鳞m − V鳞m condition; Battelli et al. 2001). The present findings, however, suggest that the mechanisms underlying this task are likely to be different from those mediating cross-attribute synchrony and binding tasks. In the future, it would be interesting to study how the right IPL activity correlates with the performance of synchrony and binding tasks for the various attribute combinations we have tested.

Despite rapid technological development in neuroscience, our knowledge about high-level sensory processing is still very limited because of the lack of a clear view of the global functional architecture. The present study reveals such a clear view, and suggests conceptual and methodological guidelines for studying the underlying cortical mechanisms by psychophysics, neuropsychology, physiology and neuro-imaging.

W.F. was partly supported by a Grant-in-Aid for Young Scientists (B) No. 21730606.

ENDNOTES

\[1\]In this paper, we use the term ‘attribute’ to mean the basic sensory dimension (e.g. colour), and ‘attribute value’ to mean a specific instance of a given attribute (e.g. red). The term ‘feature’ is used mainly for referring to salient stimulus temporal features (e.g. red onset) used in cross-attribute temporal matching (see figure 4).

\[2\]When observers perceptually bind synchronous stimuli into a single cross-attribute event, they should be able to judge the combination of attribute values. However, observers might be able to perform the binding task without having the feeling of perceptual binding that the two signals originate from a common event. The ability to perform this task must be a necessary condition for binding perception, but may not be a sufficient condition under some situations.

REFERENCES

Cross-attribute temporal binding
W. Fujisaki & S. Nishida

2289

