Lower hypoxia thresholds of cuttlefish early life stages living in a warm acidified ocean

Rui Rosa¹, Katja Trübenbach¹, Tiago Repolho¹, Marta Pimentel¹,
Filipa Faleiro¹, Joana Boavida-Portugal¹,², Miguel Baptista¹,
Vanessa M. Lopes¹, Gisela Dionísio¹,³, Miguel Costa Leal³,⁴, Ricardo Calado³
and Hans O. Pörtner⁵

¹Laboratório Marítimo da Guia, Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
²Cátedra Rui Nabeiro-Biodiversidade, CIBIO, Universidade de Évora, 7004-516 Évora, Portugal
³Departamento de Biologia and CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
⁴Skidaway Institute of Oceanography, 10 Ocean Science Circle, Savannah, GA 31411, USA
⁵Alfred Wegener Institute for Polar and Marine Research, Animal Ecophysiology, Postfach 120161, 27515 Bremerhaven, Germany

The combined effects of future ocean acidification and global warming on the hypoxia thresholds of marine biota are, to date, poorly known. Here, we show that the future warming and acidification scenario led to shorter embryonic periods, lower survival rates and the enhancement of premature hatching in the cuttlefish Sepia officinalis. Routine metabolic rates increased during the embryonic period, but environmental hypercapnia significantly depressed pre-hatchling’s energy expenditures rates (independently of temperature). During embryogenesis, there was also a significant rise in the carbon dioxide partial pressure in the perivitelline fluid (PVF), bicarbonate levels, as well as a drop in pH and oxygen partial pressure (pO₂). The critical partial pressure (i.e. hypoxic threshold) of the pre-hatchlings was significantly higher than the PVF oxygen partial pressure at the warmer and hypercapnic condition. Thus, the record of oxygen tensions below critical pO₂ in such climate scenario indicates that the already harsh conditions inside the egg capsules are expected to be magnified in the years to come, especially in populations at the border of their thermal envelope. Such a scenario promotes untimely hatching and smaller post-hatching body sizes, thus challenging the survival and fitness of early life stages.

1. Introduction

Global temperature is rising at a rate unprecedented in the experience of modern human society and expected to increase between 3°C and 6°C by 2100 [1], which is predicted to dictate deleterious temperature-mediated physiological responses at organism level [2–4]. At community level, profound impacts on phenology, diversity and biogeography are also likely to occur [5–7]. In coastal areas, many organisms already live close to their thermal tolerance limits [8,9] and ocean warming will negatively impact their performance and survival. Moreover, since the industrial revolution, [CO₂] atm has increased from 280 ppm to levels now exceeding 380 ppm [10] and is expected to rise to 730–1020 ppm by the year 2100 [1]. Carbon dioxide reacts with seawater resulting in a net increase in the concentrations of H⁺ (lowered pH), H₂CO₃ and HCO₃⁻ while decreasing CO₃²⁻. This process, termed ocean acidification, is projected to decrease the pH of surface waters between 0.14 and 0.5 units, depending on emission scenario, by the end of the twenty-first century [1]. These future changes in the ocean’s chemistry are expected to pose particular problems for key calcifying organisms [11,12]. Yet, elevated CO₂ has also been shown to have detrimental effects on the survival, growth and respiratory
Physiology of marine animals more broadly [2,13,14] (but also see [15]). Concomitantly, in the past few decades, marine hypoxia has also become one of the major ecological concerns in the world [16], because of the: (i) increase of excessive anthropogenic input of nutrients and organic matter into coastal ecosystems, especially in estuaries and semi-enclosed seas, and (ii) climate-related expansion of oceanic-oxygen-minimum zones that can cause upwelling-driven shelf hypoxia [17,18]. Low oxygen episodes lead to major losses in local biodiversity, with extreme hypoxia causing the so-called dead-zones devoid of higher marine life. Non-migrating organisms surviving in hypoxia usually experience sublethal physiological stresses followed by reduced growth and reproductive potential [16,19]. Moreover, early life stages are assumed to be more sensitive to oxygen stress than older life stages [20], but while most research has been conducted on the latter stages, the former are expected to be more vulnerable to these new climate-change-related conditions. Ultimately, oxygen stress promoted by shifting climate conditions may constitute a major bottleneck for species survival.

The combined effects of temperature and elevated CO2 on hypoxic thresholds of marine biota are, to date, poorly known. Here, we report the oxygen thresholds for hypoxia (critical pO2) in the early stages (developing/intermediate embryos and pre-hatchlings) of the common cuttlefish (Sepia officinalis) acclimated to the environmental hypercapnia (0.16% CO2, approx. 1600 ppmv; ΔpH = 0.5) and warming (+4°C) as expected for the end of this century. Besides the quantification of routine metabolic rates (RMRs) and thermal sensitivity (Q10 values), we also evaluated the abiotic conditions (pH, pCO2, pH, [HCO3-]) inside the egg capsules (i.e. in the perivitelline fluid, PVF).

2. Material and methods

(a) Egg collection and incubation

Recently spawned, stage I [21], egg masses of common cuttlefish (S. officinalis) were collected, between August and October 2012, in Caldeira de Tróia, a shallow water habitat near the mouth of the Sado estuary (38°29'18.42" N; 8°53'15.12" O), in the west coast off Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laboratório Mar do Norte, Aveiro, Portugal. After collection, eggs were immediately transferred to the aquaculture facilities in Laborató
and pre-hatchings were incubated in sealed water-jacketed respirometry chambers (RC300 respiration cell, Strathkelvin, North Lanarkshire, UK) containing filtered seawater mixed with antibiotics (50 mg L⁻¹ streptomycin) to avoid bacterial respiration. Water volumes were adjusted in relation to animal mass (up to 4 ml) in order to minimize locomotion and stress. Concomitantly, bacterial controls were conducted to correct for possible bacterial respiratory activity. Respiration chambers were placed in water baths (Lauda, Lauda-Königshofen, Germany) to control temperature. Oxygen concentrations were recorded with Clarke-type O₂ electrodes connected to a multi-channel oxygen interface (Strathkelvin). The duration of respiratory runs varied from 6 to 12 h.

Thermal sensitivity (Q₁₀) was determined using the standard equation:

\[
Q_{10} = \frac{[R(T_2)]}{[R(T_1)]} \times \frac{10^{(T_2 - T_1)/10}},
\]

where \(R(T_2) \) and \(R(T_1) \) represent the oxygen consumption rates at temperatures \(T_2 \) and \(T_1 \), respectively.

3. Results

Embryonic survival rates of the common cuttlefish (S. officinalis) were significantly affected by temperature and pH \((p < 0.05; \text{figure 1a})\). Although at 18°C there was no difference between the normocapnic and hypercapnic treatments (93.7% and 90.3%, respectively; \(p > 0.05 \)), the future warming and acidification scenarios led to significantly lower survival \((p < 0.05, 31.8\% \text{)}\). Regarding development time, and as expected, temperature significantly decreased the embryonic period, from 48–49 days at 18°C to 32–34 days at 22°C \((p < 0.05)\). Yet, pH did not elicit any significant change \((p > 0.05\)\). Premature hatching increased significantly from present-day conditions \((35.2\% \text{ at pH 8.0 and 41.0% at pH 7.5)\) to the future warming and acidification scenario \((22°C \text{ pH 7.5); } p < 0.05; \text{figure 1c})\), reaching 100%, i.e. all newborn juveniles still had unconsumed yolk inside the egg capsule.

The RMRs also rose significantly during the embryogenesis \((p < 0.05, \text{figures 2a,b and 3})\). At the intermediate embryonic stages, RMR ranged between 1.3 (18°C, pH 7.5) and 2.2 \(\mu \text{mol g}^{-1} \text{ h}^{-1} \) (22°C, pH 8.0), and at pre-hatching stage ranged between 2.2 (22°C, pH 7.5) and 5.6 \(\mu \text{mol g}^{-1} \text{ h}^{-1} \) (18°C, pH 8.0). It is noteworthy that high CO₂
significantly lower pre-hatchings RMR independently of temperature \((p < 0.05; \text{figure } 2b)\). Regarding the thermal sensitivity data, the embryos’ \(Q_{10}\) values ranged around 2 and 3 at the intermediate stage and below 1 at the pre-hatching stage, which was indicative of metabolic depression \((\text{figure } 4)\). With the increase in energy expenditure rates throughout embryogenesis, there was a significant rise in PVF \(p\text{CO}_2\) \((p < 0.05, \text{figure } 2c,d)\) and \(\text{HCO}_3^-\) \((p < 0.05, \text{figure } 2g,h)\), as well as a drop in pH \((p < 0.05, \text{figure } 2e,f)\), especially at 18°C. More specifically, at the intermediate embryonic stages, PVF \(p\text{CO}_2\) ranged between 2020.5 \((18°C, \text{pH } 8.0)\) and 4478.6 ppm \((22°C, \text{pH } 7.5)\), and at pre-hatching stage ranged between 2546.5 \((22°C, \text{pH } 8.0)\) and 11476.8 ppm \((18°C, \text{pH } 7.5)\). Regarding PVF \(\text{HCO}_3^-\), the values ranged between 2.2 \((18°C, \text{pH } 8.0)\) and 2.3 mM \((22°C, \text{pH } 7.5; p > 0.05)\) in intermediate stages, and between 2.3 \((22°C, \text{pH } 8.0)\) and 2.7 mM \((18°C, \text{pH } 7.5; p < 0.05)\) in pre-hatchings. The drop in pH was more noticeable at the pre-hatching stage, ranging from 6.9 \((18°C, \text{pH } 7.5; p < 0.05)\) and 7.5 \((22°C, \text{pH } 8.0; p < 0.05)\).

Additionally, \(p\text{O}_2\) decreased significantly throughout the embryonic development \((p < 0.05; \text{figure } 5a,b)\). While \(p\text{O}_2\) ranged between 2.2 \((22°C, \text{pH } 8.0)\) and 6.1 kPa \((18°C, \text{pH } 8.0; p < 0.05)\) in intermediate stages, it ranged between 1.8 \((22°C, \text{pH } 8.0)\) and 3.4 kPa in the more advanced ontogenetic stage \((18°C, \text{pH } 8.0; p < 0.05)\). The external \(P_c\) \((P_{c,\text{ext}})\) of the intermediate embryos was fairly similar between all the treatments, varying non-significantly between 3.2 and 3.7 kPa \((p > 0.05; \text{figure } 5c)\). On the other hand, the pre-hatchings’ \(P_{c,\text{ext}}\) were significantly lower than those observed for the intermediate embryos (except for the high \(\text{CO}_2\) and warming scenario; \text{figure } 5d), and increased significantly from 1.6 \((18°C, \text{pH } 8.0)\) to 3.7 kPa \((22°C, \text{pH } 7.5; p < 0.05)\). The
Sepia officinalis (grey circles) of common cuttlefish weight) averaged over 2-min intervals as a function of available oxygen + mean hatchlings’ between 2.6 and 3.0 kPa; not vary between treatments in intermediate stages (ranging on the mass-specific routine metabolic rates (RMR, \(m \) mol O\(_2\) g\(^{-1}\) h\(^{-1}\)) RMR \(m \) mol O\(_2\) g\(^{-1}\) h\(^{-1}\)) RMR \(m \) RMR \(m \) mol O\(_2\) g\(^{-1}\) h\(^{-1}\) 0.05; figure 5b). Consequently, the \(P_{c,in} \) of the intermediate stages never reached higher than the partial pressure of the perivitelline space (figure 5g). A quite different situation occurred in the pre-hatching stage, because the \(P_{c,in} \) (hypoxic threshold) was higher than the PVF \(pO_2 \) at the warmer and hypercapnic condition (negative value in figure 5h).

4. Discussion

As expected, the metabolic demand rose during embryogenesis, but the future warming scenario led to lower RMR at the pre-hatching stage. Temperature-independent metabolism [33] and hypoxia-related metabolic suppression [2] are well-known energy-conserving strategies in marine molluscs, but a heat induction of hypometabolism has rarely been described [34]. In this study, warming \(per \; se \) caused a notable metabolic depression in the pre-hatching stage (at pH 8.0–28.7%, \(p > 0.05 \); 22°C, pH 8.0, \(p < 0.05 \)). Based on thermal sensitivity data, we argue that the metabolic depression is a short-term method of extending the time-frame over which unfavourable conditions inside the egg can be withstood.

Cuttlefish embryos develop within egg capsules that act as physical protection and barrier to the diffusion of dissolved gases. During the present experiments, the eggs were swelling due to the entry of ambient water into the hypertonic PVF, with the eggshell becoming much thinner. Concomitantly, energy expenditure increased during development (e.g. for sustaining cellular growth, organogenesis and muscular activity) and led to a significant rise in PVF \(pCO_2 \) and \(HCO_3^- \), as well as a drop in pH, especially at 18°C. Such trends were less evident at 22°C possibly as a consequence of the hatchling’s physiological strategy. Low pH or high \(CO_2 \) are common triggers of metabolic depression [35], and themselves caused a significant metabolic drop in the pre-hatchlings (18°C, 20.4%, \(p > 0.05 \); 22°C, 45.4%, \(p < 0.05 \); figures 1b and 3).

Oxygen depletion within eggs was partially compensated for by egg swelling (i.e. increased surface area, reduced egg wall thickness; see a comprehensive examination of the subject in [32]) but it still did not prevent \(pO_2 \) from consistently falling to potential critical levels. Low \(pO_2 \) levels may also

Figure 3. (a–d) Effect of hypercapnia (\(\Delta pH = 0.5 \)) and warming (+4°C) on the mass-specific routine metabolic rates (RMR, \(\mu \) mol O\(_2\) h\(^{-1}\) g\(^{-1}\) wet weight) averaged over 2-min intervals as a function of available oxygen (mmHg) in intermediate embryonic stages (black circles) and pre-hatchlings (grey circles) of common cuttlefish *Sepia officinalis*. Values represent the mean ± s.d. of the 20 individual runs.

Figure 4. Effect of hypercapnia (\(\Delta pH = 0.5 \)) on the thermal sensitivity (\(Q_{10} \)) between 18°C and 22°C of intermediate embryonic stages (left-hand side panels) and pre-hatchlings (right-hand side panels) of common cuttlefish *Sepia officinalis*. Values represent the mean ± s.d. of the 20 individual runs.
have contributed to the hypometabolic state as a possible consequence of the reduced capacity to extract oxygen at hypoxic and hypercapnic conditions within egg capsules [36]. In fact, the hatchlings acclimated to the warmer scenarios were exposed to low oxygen levels, similar to (at pH 8.0) or even below (at pH 7.5; figure 5) the values observed for their critical \(p_O_2 \). The ability to live for limited time periods below \(P_c \), via metabolic depression, has already been previously described for embryos [37] and older life stages [2, 38], and is known to be accompanied by the reallocation of cellular energy to essential ATP demand processes as well as the transition of anaerobic metabolism [39]. Thus, with the decrease in pre-hatchlings’ oxygen supply, metabolic processes could be partly shifted towards less efficient anaerobic processes [4, 5].

One prevailing strategy used to achieve metabolic depression is reducing protein synthesis [40] and, consequently, growth. Although considered a sublethal reversible process, metabolic depression is only an effective adaptive strategy for the survival of short-term hypercapnia and hypoxia [40, 41], but not advantageous under persistent elevations of CO\(_2\) [12, 14]. Thus, we expect that the stressful abiotic conditions inside molluscan eggs will be aggravated with ocean acidification, warming and expanding hypoxia, especially in populations at the border of their thermal envelope [4]. These stressors may act together as a main trigger for premature hatching (as shown in figure 1c) and smaller post-hatching body sizes [3, 42] and, consequently, dictate negative effects on survival and development of posterior ontogenetic stages. These effects may constrain species survival in such areas and, thereby, cause a shift on species’ biogeographic range.

Funding statement. This research was supported by the Portuguese National Science Foundation (FCT PTDC/MAR/098066/2008, FCT PTDC/BIA-EC/103266/2008 and Programa Ciência 2007 to R.R.).

Figure 5. Effect of hypercapnia (\(\Delta pH = 0.5 \)) and warming (+4°C) on the: (a,b) PVF \(p_O_2 \) (kPa; \(n = 20 \)), (c,d) estimated internal critical partial pressure (\(P_c,in \), kPa; \(n = 20 \)), and (e,h) difference between mean values of PVF \(p_O_2 \) and \(P_c,in \) (kPa), of intermediate embryonic stages (a,c,e,g) and pre-hatchlings (b,d,f,h) of common cuttlefish *Sepia officinalis*. Values represent the mean \(\pm \) s.d. Different letters represent significant differences between treatments (\(p < 0.05 \)). Asterisks represent significant differences between life stages (\(p < 0.05 \)).