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Currently, large-scale transmissions of infectious diseases are becoming more

closely associated with accelerated globalization and climate change, but quan-

titative analyses are still rare. By using an extensive dataset consisting of date

and location of cases for the third plague pandemic from 1772 to 1964 in

China and a novel method (nearest neighbour approach) which deals with

both short- and long-distance transmissions, we found the presence of major

roads, rivers and coastline accelerated the spread of plague and shaped the

transmission patterns. We found that plague spread velocity was positively

associated with wet conditions (measured by an index of drought and flood

events) in China, probably due to flood-driven transmission by people or

rodents. Our study provides new insights on transmission patterns and poss-

ible mechanisms behind variability in transmission speed, with implications

for prevention and control measures. The methodology may also be applicable

to studies of disease dynamics or species movement in other systems.
1. Introduction
Frequent population movement and goods exchange, caused by accelerated

globalization and climate change during the past decades, have significantly

facilitated spatial transmission of infectious diseases worldwide [1–7]. How-

ever, the effects of environmental and social factors on spatial transmission

patterns and velocity of diseases have rarely been tested. In particular, the

role of human- or wildlife-driven, long-distance transmission of diseases is

poorly understood due to limitations inherent in available research approaches,

which constrain our capacity to prevent and control infectious diseases globally.

Transmission of pandemic diseases is often classified into contact and relocated

diffusions which are caused, respectively, by short- and long-distance transmissions

[8–12]. Contact diffusion refers to the short-distance spread of a disease outward

from a central focus continuously in space. The disease often spreads in circles or

along lines away from the central focus. Relocated diffusion refers to a long-distance

discontinuous jump of an infection from one region to another, which then pro-

duces contact diffusion in a new site. Trend-surface analysis (TSA) has been used

to study spatial contact diffusion of many diseases [11,13–15]. However, TSA

does not work well for diseases with many long-distance transmissions, which

have become increasingly common with the rapid advance of human transpor-

tation. This creates an urgent need to develop novel approaches to better

understand both contact and relocated diffusions of global pandemics.

Plague has caused three pandemics, which killed about 200 million people

[16], and have greatly shaped human societies [17–21]. Currently, plague out-

breaks occur frequently in many countries in the Americas, Asia and Africa,

and plague remains an important threat to human health as a re-emerging
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Figure 1. (a) Plague invasion process in China during the third plague pandemic from 1772 to 1964. Points show counties where human plague was observed, with
the colour showing the year when the first case was reported within the county boundary. (b) Location of hydrological stations with D/W data (blue triangle).
Arrows indicate the hydrological station used for analysis of how climate affects plague spread for counties where plague manifested. (c) Red points indicate where
the plague-infected county had a road going through, and blue points shows where the infected county had no major road going through. Blue lines indicate the
largest rivers in China. (d ) Elevation map (unit: metre) and political central location of counties with plague outbreaks. Only counties with confirmed plague cases
are shown.
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infectious disease [17,20,22–24]. Though plague dynamics

have been well studied in the time domain [25–32], the

spatial transmission of plague and its underlying influencing

factors are rarely studied (but see [14,15,33]). There is a need

for studies on the large-scale transmission patterns of plague,

and the roles of human transportation, climate and landscape

factors in shaping these patterns.

The third plague pandemic started in 1772 in Yunnan pro-

vince in China (figure 1a; electronic supplementary material,

figure S1) and was spread worldwide from Hong Kong in

1894 [34,35]. It spread to 541 counties in 21 provinces in

China, infecting 2.5 million people and causing 2.2 million

deaths [17,36]. The occurrences of human plague in both

time and space were well recorded in China, which provides
a good opportunity for studying the transmission pattern

and the influences of both social and environmental factors.

The aim of this study was to investigate the climate and trans-

portation routes on spread velocity and patterns of human

plague from 1772 to 1964 in China by using a novel nearest

neighbour approach (NNA).
2. Results
(a) Analysis of plague spread paths and patterns
NNA revealed clearly distinguishable spread paths and

showed that there were three transmission stages (figure 2b,

also see figure 1a and the electronic supplementary material,

http://rspb.royalsocietypublishing.org/
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Figure 2. Two methods were used to estimate plague spread speed during the third pandemic in China. (a) TSA. Contours were drawn based on the trend surface,
which presented the predicted plague invasive year. The slope of the trend surface represents the reciprocal plague spread speed. Red points indicate the location of
counties with cases of plague infection. (b) NNA. Arrows were drawn to the plague-invaded counties from the nearest neighbour counties where plague appeared
earlier. Plague spread speed was the length of arrows divided by the difference in the first plague-invaded year between the counties. Only counties with confirmed
plague cases are shown.
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figure S1). Plague was confined to a small area (red arrows) in

Yunnan prior to 1800. The first transmission stage occurred

between 1800 and 1880 (yellow and green arrows), during

which plague spread to larger parts of Yunnan of South

China, in a manner resembling short-distance transmission

(contact diffusion). During this transmission stage, there

were also two long-distance transmission events (perhaps

early indicators of the start of the second transmission

stage), which resulted in the arrival of plague in Qinghai of

North China in 1854 and the arrival of plague in Guangdong

of southeast China in 1867, both examples of relocated diffu-

sion. The second transmission stage occurred between 1880

and 1900 (light-blue arrows), during which period plague

spread to several sites through predominantly long-distance

transmission within North China (relocated diffusion).

At the same time, plague spread in southeast China along

the coastline, in a mixture of both long-distance (along the

coastline) and short-distance (toward inlands) transmissions.

In the third stage from 1900 to 1960 (deep blue and purple

arrows), plague expanded to the neighbouring regions

through short-distance contact diffusion from the bases of

plague sites of the second stage in both North and South

China. TSA revealed one typical travelling wave (spreading

outward from a central focus continuously in space) repre-

senting contact diffusions in Yunnan and another wave

along the coastline of South China, but no clear travelling

waves were detected in North China, perhaps due to the

many long-distance transmissions (figure 2b).
(b) Analysis of plague spread velocity
We estimated plague spread velocity by using both TSA and

NNA (figure 2; electronic supplementary material, table S2

and figures S2–S11). According to TSA, the median rate of

plague spread was 40.1 km yr21 in the whole of China,
112.5 km yr21 in North China and 19.3 km yr21 in South

China (electronic supplementary material, table S2). According

to NNA, the median velocity was 11.8 km yr21 in the whole of

China, 15.5 km yr21 in North China and 9.4 km yr21 in South

China (electronic supplementary material, table S2). Notable

is that plague spreads faster in North China than in South

China according to both TSA and NNA, and that in general

the velocity estimated by NNA is lower than that by TSA

(electronic supplementary material, figure S8).

During the main epidemic periods (i.e. the periods with

most case reports), plague spread velocity decreased through

time for the whole China model (figure 3a, from 1850 to

1950), South China model (figure 3c, from 1850 to 1950)

and North China model (figure 3e, from 1900 to 1940).

Of the effects of transportation routes, generalized additive

model (GAM) analysis suggested that roads, coastline and

rivers promoted plague spread in China. Road presence

showed a positive association with spread velocity in the

model for the whole of China: (estimated increase in ln(velocity

(km yr21)+ s.e. ¼ 0.38+0.08, t82.56 ¼ 4.7, p , 0.01)) in the

North China model (0.22+0.10, t67.36 ¼ 2.3, p , 0.05) and in

the South China model (0.63+0.14, t31.95 ¼ 4.49, p , 0.01).

River presence showed positive association with spread vel-

ocity in the North China model (0.29+0.12, t67.36 ¼ 2.46, p ,

0.05) and in the whole China model (0.20+0.09, t82.56 ¼ 2.13,

p , 0.05). Coastline presence showed a positive association

with spread velocity in the whole China model (0.44+0.19,

t82.56 ¼ 2.34, p , 0.05) and marginally significantly in the

South China model (0.38+0.20, t31.95 ¼ 1.94, p ¼ 0.054).

Of the effects of geographical factors, GAM analysis

revealed a positive association of elevation with spread velocity

in the North China model (F1,67.36 ¼ 12.34, p , 0.01; figure 3g)

but not in the South- or whole China models. In addition, rug-

gedness exhibited a significant negative association with spread

velocity in the North China model (F1.54, 67.36 ¼ 3.96, p , 0.05;

http://rspb.royalsocietypublishing.org/
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Figure 3. Partial effects on plague spread velocities calculated by NNA methods. Partial effects are estimated from the GAM by correcting for effects of other
variables. (a) Temporal trend in the whole of China. (b) Dryness/wetness effects in the whole of China. (c) Temporal trend in South China. (d ) Dryness/wetness
effects in South China. (e) Temporal trend in North China. ( f ) Dryness/wetness effects in North China. (g) Elevation effect in North China. (h) Ruggedness effect in
North China. In addition, effects of location, plague prevalence, roads, rivers and coastline were accounted for (see text and electronic supplementary material).
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figure 3h) but not the South- or whole China models. Because of

correlation between elevation and ruggedness (r ¼ 0.52), their

relative contributions should be interpreted with some caution;

we found, however, that a model with both terms included was

favoured in terms of the generalized cross validation (GCV) cri-

terion (a measure of predictive power) compared with models

with one or both terms omitted.

Of the effects of climate, GAM analysis revealed that dry

conditions (high values of the dryness/wetness index, measur-

ing the spatial and temporal variation in droughts and floods)

were associated with low spread velocity in all three models: in

the North China model, F1.83,67.36 ¼ 3.68, p , 0.05 (figure 3f), in
the South China model F1.6, 31.95 ¼ 6.64, p , 0.01 (figure 3d)

and in the whole China model F1, 82.56 ¼ 17.41, p , 0.01

(figure 3b).
3. Discussion
(a) Plague spread paths and patterns
Owing to frequent long-distance human transportation

activities, the spread process of diseases often involves both

short- and long-distance transmission [9,10]. The traditional

approaches, including TSA, are inadequate for dealing

http://rspb.royalsocietypublishing.org/
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simultaneously with these two spread processes of diseases.

Three stages of spatial transmission during the third plague

pandemic were identified using our NNA method. After an

initial short-distance transmission (contact diffusion) phase

within the Yunnan province in the first stage, plague

spread in North China as a clear long-distance transmission

(relocated diffusion) and in South China as both short-

distance and long-distance transmissions during the second

stage. Spread of plague in the third stage was mostly

identified as short-distance transmission.

Adjemian et al. [15] reported that the velocity of plague

spread increased during the invasion of plague into the wes-

tern US (1900–1969). This stands in contrast to this study,

which indicates that the velocity of plague spread consistently

decreased during the main pandemic period for both North

and South China (figure 3a,c,e). While difference in estimation

methods could be partly responsible for this difference in

temporal trend between China and the United States, we

note that there are also important differences between the

systems, for example, plague being native to China but not

the United States [17,37]. Phylogenetic analysis suggests that

Yersinia pestis evolved in or near China and spread through

multiple radiations to Europe, South America, Africa and

Southeast Asia [19].
(b) Effects of climate
Previous studies indicated inconsistent associations between

spread velocity of plague and precipitation. In a study from

the western US, the spread velocity of both animal and

human plague was found to be negatively associated with

annual precipitation [15], but the underlying mechanism was

not discussed. However, in another study, the spread velocity

of plague among prairie dogs (Cynomys ludovicianus) was

found to be positively associated with precipitation [33]; this

observation was explained by the conventional cascade

hypothesis that increased precipitation increases primary pro-

ductivity, which is followed by increased rodent/flea density,

and then plague transmission [25,26].

Contrary to the results on human plague by Adjemian

et al. [15], we found that the association between plague

spread velocity and wetness was positive in both regional

models and the whole China model. Our results suggest

that wet conditions, as measured by flood and drought

events, facilitated spatial spread of human plague in China.

Wet weather may have increased human contact with

plague vectors, for example rodents [38], and caused the

migration of people who had lost their homes in floods. All

of these factors may have promoted the spatial transmission

of plague. In a previous study, we showed that wet weather

increased plague occurrences in North China with a 1-year

time-lag, probably through increased rodent abundance in

response to improved food or vegetation [32]. By contrast,

wet weather in South China was associated with reduced

plague occurrence, possibly a result of flooding events killing

rodents [32]. The effects of wet conditions on plague pre-

valence and spread velocity thus appear to be of opposite

sign in South China. We propose that in the wet South

China, although floods may decrease plague occurrences by

killing rodents within a location, floods may promote the

speed of the transmission between locations due to increased

migration of plague-infected people and rodents. It should be

noted that the dryness/wetness index considered in this
study is not equal to precipitation as measured using

modern meteorological instruments. It represents the extreme

conditions as measured by the drought and flood events

in China (electronic supplementary material, section 5.1).

Thus, caution is required when making comparisons of our

results with previous ones using precipitation data.
(c) Effects of transportation routes
Although human transportation systems have frequently

been hypothesized as causes of disease transmission [8], their

effects are rarely tested. We provided quantitative evidence

that roads, rivers and coastlines are positively associated with

spread velocity of human plague of the third plague pandemic.

Furthermore, using NNA, we identified many long-distance

transmissions closely related to human transportation routes.

The long-distance dispersal of plague from Yunnan to the

southeast coastline was likely mediated by river ships, not by

land routes because plague was not reported in Guangxi

before this relocation spread diffusion. Plague in North

China was caused by a long-distance transmission, possibly

from Yunnan to Qinghai. The jump in the spread of plague

from Yunnan to Qinghai province was likely facilitated by

the Tea Road (Chama Gudao) from Yunnan, through Sichuan,

to Qinghai, Shanxi and Inner Mongolia, Xinjiang, Tibet and

other locations (electronic supplementary material, figure S14).

Dali and Lijiang counties of Yunnan, which had severe plague

occurrences, were important tea ports along this ancient route.

Plague-infected humans, rodents or fleas carried by rodents or

people might have occasionally transmitted the disease along

this route. The long-distance transmission of plague during

the second stage in China was likely promoted by the trading

activities. The plague that appeared in Xinjiang in western

China appears to have been transmitted from Gansu along

the ancient trade network known as the Silk Road (electronic

supplementary material, figures S13 and S14). The discovery

of plague along the Silk Road may complement the con-

ventional view that the international spread of the third

pandemic was via ship from Hong Kong [35].

Roads might have changed during the study period,

especially during the 1900s. Using another available road

map published in 1946, we found similar results to those

using the 1910 road map, strengthening the confidence in

the findings (electronic supplementary material, figure S13).

However, there is still limitation of using road maps of

1910 and 1946 to represent the road structure during the

study period covering nearly 200 years. The pre-1900 road

structure should be especially important in affecting spread

of plague in the south, where many infections occurred

before 1910. Thus, it is necessary to assess the impact of road

structure changes on plague transmission in future studies.

TSA results on plague spread velocities during the third

plague pandemic in China (40.1 km yr21 for the whole of

China) were comparable to corresponding estimates of

plague spread in western US (45–87 km yr21 from 1900 to

1966) [15]. However, this contrasts with the spread velocity

(341.9–643.7 km yr21 from 1347 to 1350) in Europe during

the time of the Black Death [14]. The advanced sea trans-

portation in Europe might have contributed to the much

higher spread velocity of plague during the Black Death.

Besides, the much higher spread velocity in Europe estimated

by Noble [14] was caused by the pneumonic plague which

was transmitted among people [15].
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(d) Effects of geographical factors
In North America, both the southern Rockies and the north-

western forested mountains are areas where the velocity of

plague spread is high [15]. The observed positive association

between plague spread velocity and elevation is likely due

to the fact that natural plague foci are found mainly in moun-

tainous regions where rodent hosts and flea vectors are

abundant [17,39]. Such a relationship between plague foci

and elevation has been found in China for the main plague

host Marmota himalayana in the Qinghai–Tibetan plateau,

which inhabits various types of meadow-steppes at elevation

levels between 2700 and 5450 m [17,39]. Similarly, the main

rodent plague hosts in Inner Mongolia are Marmota sibirica,

Spermophilus dauricus and Meriones unguiculatu [17,39], which

inhabit grasslands at elevation levels of over 1000 m. The

observed negative association between spread velocity and

ruggedness suggests that ruggedness may reduce plague trans-

mission owing to transportation barriers for humans and/or

rodents. This may also explain why spread velocity in South

China with more mountainous areas is lower than that in

North China with flat plateau regions.

Results of both the TSA and NNA methods indicated that

the spread velocity in North China was greater on average

than in South China (all p , 0.05, ANOVA; electronic sup-

plementary material, table S2 and figures S6–S9). This may

have been caused by the differences in the regional transpor-

tation systems. In North China, transportation is relatively

easy in the plains and high plateaus, whereas in South

China, transportation is often made difficult by rugged moun-

tainous regions. During the third pandemic, transportation

systems (especially roads and railways) were much more

advanced in North China. Indeed, NNA revealed more long-

distance transmissions of human plague in North China,

whereas in South China the long-distance transmissions were

very rare (and those that occurred seem likely to have been

caused by sea transportation).

(e) Differences in estimation of spread velocity
The spread velocities in both North and South China estimated

using TSA were all higher than NNA estimates (electronic

supplementary material, figures S7–S9 and table S2). This is

caused by the difference in estimation methods between TSA

and NNA. NNA estimates the spread velocity based on only

the nearest site, whereas TSA uses all available sites nearby.

Besides, we note that the differences in velocity estimates of

TSA and NNA might partly reflect ability of dealing with

long-distance transmissions of the two methods (electronic

supplementary material, figures S5 and S8, and table S2).

Though TSA works well for short-distance transmissions uni-

formly out from a central point [13], it is easily affected by

long-distance transmission. In North China, there were many

long-distance transmissions. Using TSA, the locations in

North China are then estimated to be infected at approximately

the same time, resulting in a flat TSA surface and high esti-

mates of spread velocity for the entire region. The finer scale

dynamics are not captured. Using NNA, the long-distance

transmissions only influence the velocity estimates for the

sites that are directly affected by long-distance transmission,

while the velocity estimates for the majority of sites are

mainly influenced by the local-scale dynamics.

NNA uses only simple data consisting of date and location,

and the method could potentially have broader applications, for
example, for studying the transmission ecology of other kinds

of diseases or biological invasion of alien species, especially

under the frequent disturbances of human or wildlife inter-

ventions. Besides, at least for low-dimensional transmission

patterns as in our system (each infected site was the source of

transmission to few new sites; electronic supplementary

material, figure S10), the NNA appears not to be very sensitive

to missing data. The estimated transmission patterns did not

show much change when 10–50% of the original plague-

infected counties were randomly removed as ‘missing data’

(electronic supplementary material, figure S5). Further, the

calculation of transmission speed among the counties was not

strongly affected by missing data (electronic supplementary

material, figure S6).

( f ) Implications for plague prevention and
management

We identified three epidemic stages of plague transmission

and showed that both contact and relocated diffusion pro-

cesses can be detected by using NNA. Using NNA, we

revealed the finer scale transmission pattern of plague in

both time and space. This knowledge is expected to contrib-

ute to plague control and prevention as well as to the

assessment of control efficiency.

Our results indicated special attention must be paid

to newly opened transportation routes, for example the

Qinghai–Tibet railway in China, that connect the natural

foci of plague. It is essential to detect long-distance trans-

missions as early as possible, at the beginning of disease

outbreaks, and then control local contact diffusions.

Accelerated climate change and globalization is likely

increasing risk of infectious diseases [40]. Our results

revealed that high levels of precipitation, especially flooding

events, increased the spread velocity of plague. With acceler-

ated impact of climate warming, some regions (e.g. northwest

China) are expected to have more rainfall [41], and thus may

have more chance of plague spread. Therefore, plague sur-

veillance ought to be enhanced in regions experiencing

sustained humid weather or flooding.
4. Material and methods
(a) Plague data
Extensive data on human plague cases from 1772 to 1964 were

compiled by a team led by the Institute of Epidemiology and

Microbiology, Chinese Academy of Medical Sciences [36]. To

analyse the spread of plague, we identified the year of the first

recorded human plague case for each county of China (here,

we define it as the ‘first plague-invaded year’) and the loca-

tions of the political centres of the counties (figure 1a;

electronic supplementary material, figure S1).

(b) Climate proxy data
Spatio-temporal dryness/wetness data were derived from the

book ‘Yearly Charts of Dryness/wetness in China for the Last

500-Year Period’ [42]. The dryness/wetness index (D/W), classi-

fied into five categories from 1 to 5, represents the climate

conditions ranging from extreme wet to extreme dry. We used

the dryness/wetness index of the nearest region for each county

as a measure of both the spatial and the temporal variation in dry-

ness and wetness (figure 1b). Counties with no region having

http://rspb.royalsocietypublishing.org/
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dryness/wetness data within a 200 km range were not included in

the statistical analysis (figure 1b). For detailed information about

the climate proxy data, see Central Meteorological Bureau [42].

(c) Road, river, coastline and elevation data
Road data were extracted from Chinese historical maps produced

during the late Qing Dynasty (around 1910) [43], which was the

best available data matching the study period. River, coastline

and grid elevation data (1 � 1 km) were obtained from the

National Fundamental Geographical Information System of

China (http://ngcc.sbsm.gov.cn/). River, coastline and road

data were coded as binary variables indicating presence (1) or

absence (0) within the county (figure 1c). The river data we

used in this study included rivers above ‘third-order stream’

(stream order is a measure of the relative size of streams), most

of them are navigable. We note that these variables were only

rough indices of the transportation system, and that in particular

the road network changed during the studied period. Because of

the noise in these variables, the effects of transportation factors

on transmission speed were likely underestimated in the statisti-

cal analysis. Average elevation of each county was calculated as

the arithmetic mean of all elevation values within each county

using ArcGIS v. 9.2 (ESRI). We used the standard deviation of

the elevations within each county as a ruggedness index.

(d) Trend-surface analysis
TSA has been widely used to estimate spread velocity of travel-

ling waves of diseases including human plague over large spatial

scales [14,15] (figure 2a). TSA is a smoothing method based on a

random-walk model in which the spread of a disease is approxi-

mated by considering invasive year (dependent variable) as

polynomial functions of the geographical coordinates (indepen-

dent variables) of the infected locations [44,45]. The speed of

the plague wave was then calculated from the estimated slope

of the interpolated surface through the partial differentials

of the polynomial model (electronic supplementary material,

table S1 and figure S2).

TSA works well for short-distance (contact diffusive) trans-

mission of diseases, but a limitation of TSA is that it may be

biased when frequent long-distance transmissions of the disease

obscures travelling waves of disease spread [13]. Furthermore,

we found the spread velocities estimated using TSA are highly

autocorrelated in space, which can limit subsequent statistical

analysis (electronic supplementary material, figure S7A). Besides,

TSA cannot reveal detailed transmission routes which are

important for targeting disease control efforts.

(e) Nearest neighbour approach
To overcome the limitations of TSA, we propose a new method,

NNA, to estimate the spread velocity and reveal transmission

paths (figure 2b). Our NNA works by following the rule of ‘ear-

lier in time, then closest in space’ (electronic supplementary

material, figure S4). We assumed that plague in a given county

(sink county) was transmitted from the spatially nearest county

(source county) with plague-invaded time (year) earlier than

that of the sink county. First, we listed the earliest plague-

invaded years of plague of all counties and the location using

a table. Second, for a given sink county (plague-infected

county), we identified the source county as the county that was

closest to the sink county in space among the counties having

earlier first plague-invaded time (year) than the sink county.

The spread velocity was calculated as the distance (km) between

the source and sink counties, divided by the time interval (years)

between the first plague-invaded years of the two counties (elec-

tronic supplementary material, figures S4 and S5). Although the

nearest neighbour principle has been used in identifying disease
sources for estimating basic reproductive number [46], it has, to

our knowledge, not been used for reconstructing the trans-

mission paths of diseases (or other organisms) and estimating

spread velocity based on information of date and location.

NNA has three advantages over TSA. First, we found the

spread velocity values estimated by NNA to be less autocorrelated

in space (electronic supplementary material, figure S7). Second,

NNA can reveal detailed spread routes of plague at both fine

scale and large scale under the parsimonious assumption that it

spreads from the nearest location where plague previously

occurred (figure 2). Third, NNA functions well with both short-

and long-distance transmissions compared with TSA (figure 2).

Long-distance transmission in North China seems to have

obscured travelling waves shown by TSA (figure 2b). However,

NNA also has some disadvantages. For example, if the disease

does not transmit from the nearest neighbour, the spread velocity

may be underestimated. Thus, NNA and TSA may be complemen-

tary methods for unravelling the spatial transmissions of diseases.

It should be noted that for the quantification of local-scale

transmission speed, the number of sink sites infected per source

site may be equally relevant as the distance per time between

source and sink sites (the metric considered in the current analy-

sis). The NNA allows the quantification of both metrics, showing

that in our system, the majority of the sites were only identified

as source for one sink site (electronic supplementary material,

figure S10). Because of the limited variability in the number of

sink sites per source site, we focused the statistical analysis on

the spread distance per time.
( f ) Generalized additive models
To estimate the effects of potential factors on spread velocity

of human plague, we analysed the velocity data using generali-

zed additive models with a quasi-Poisson error distribution

(logarithmic link function) [47]. The ‘mgcv’ package (v. 1.7–6) of

R was used for these analyses [48]. We used the GCV value as

a model selection criterion. The GCV of a model is a proxy for

the model’s out-of-sample predictive mean squared error and

can be used to compare alternative model formulations [47,49].

A model with lower GCV has more predictive power and was

hence preferred to ones with higher GCV. Because there are two

distinct regions of plague occurrence in North and South China,

where both climate and plague dynamics differ (figure 1 and elec-

tronic supplementary material, figure S1), we modelled the spread

patterns of North and South China separately, in addition to one

analysis covering all China (electronic supplementary material,

tables S4 and S5, and figures S15–S27).

The initial candidate models of spread velocity included vari-

ables of year, road, river, coastline, elevation, ruggedness, location

(longitude and latitude), plague prevalence and dryness/wetness

index (D/W). Because there was spatial autocorrelation in the

model residuals, we introduced an interaction effect between

plague prevalence and location into the model, which not only

was preferred by GCV model selection criteria but also reduced

residual spatial autocorrelation (electronic supplementary

material, tables S4 and S5, and figures S15–S27). The full model

formula was

Vi;j ¼ aþ bðYeariÞ þ cðRoadjÞ þ dðRiverjÞ þ eðCoastjÞ þ f ðElejÞ

þ gðRugjÞ þ hðLonj;Latj;LogðPi;jÞÞ þK
D

Wi�1;j

� �
þ 1i;j

9>=
>;:

ð4:1Þ

Here, Vi,j is the natural logarithm of plague spread velocity in

year i and county j. Parameter a is the overall intercept. b(Yeari) is

a smooth function of invasive year of plague into county j (cubic

regression spline function). c(Roadj), d(Riverj) and e(Coastj) are

effects of binary variables indicating whether roads, rivers and
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coast are present or absent in county j. f(Elej) is a smooth function

of log-transformed (plus 1 to avoid logarithm of zero values)

elevation in county j (cubic regression spline function with maxi-

mally 2 d.f., i.e. three knots). g(Rugj) is a smooth function of log-

transformed (plus 1 to avoid zero logarithm) ruggedness in

county j (cubic regression spline function with maximally

2 d.f.). h(Lonj, Latj, Log(Pi,j)) is a tensor-product anisotropic

smooth function of h0(Log(Pi,j)) with h00(Lonj, Latj). h0(Log(Pi,j))

is a smooth function of the total human plague cases (log-

transformed, plus 1 to avoid zero logarithm) in the assumed

source county of plague transmitted to county j (i.e. the nearest

neighbour with recorded plague) for all years prior to year i
(cubic regression spline function with maximally 2 d.f.).

h00(Lonj, Latj) is a two-dimensional smooth function of longitude

and latitude (thin-plate regression spline with maximally 20 d.f.

when modelling North and South China separately, and maxi-

mally 30 d.f. when modelling whole China). K(D/Wi21,j) is a

smooth function of the dryness/wetness index in the year

preceding the invasive year of plague into county j (cubic

regression spline function with 2 d.f.). We only included dry-

ness/wetness of sink counties into the model because prior

analyses indicate that dryness/wetness of the source counties

shows no significant effect (electronic supplementary material,
table S3). We used backward stepwise model selection separately

for North China, South China and all of China (electronic sup-

plementary material, table S4). The velocity estimated by NNA

was used as a response variable in this analysis because these

velocity estimates had minor spatial autocorrelation, while TSA

velocity estimates were highly spatially autocorrelated (electronic

supplementary material, figure S7).
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