Species richness and interacting factors control invasibility of a marine community

M. L. Marraffini† and J. B. Geller

Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, Moss Landing, CA 95039, USA

Anthropogenic vectors have moved marine species around the world leading to increased invasions and expanded species’ ranges. The biotic resistance hypothesis of Elton (in The ecology of invasions by animals and plants, 1958) predicts that more diverse communities should have greater resistance to invasions, but experiments have been equivocal. We hypothesized that species richness interacts with other factors to determine experimental outcomes. We manipulated species richness, species composition (native and introduced) and availability of bare space in invertebrate assemblages in a marina in Monterey, CA. Increased species richness significantly interacted with both initial cover of native species and of all organisms to collectively decrease recruitment. Although native species decreased recruitment, introduced species had a similar effect, and we concluded that biotic resistance is conferred by total species richness. We suggest that contradictory conclusions in previous studies about the role of diversity in regulating invasions reflect uncontrolled variables in those experiments that modified the effect of species richness. Our results suggest that patches of low diversity and abundance may facilitate invasions, and that such patches, once colonized by non-indigenous species, can resist both native and non-indigenous species recruitment.

1. Introduction

Human activities over the last century have led to major changes in the worldwide distribution of marine species. Shipping, transport within the aquarium trade and deliberate introduction for mariculture have changed or expanded species ranges and transported non-indigenous species (NIS) (e.g. [1–4]). NIS can negatively impact mariculture, recreational and commercial fishing, restoration efforts, native habitats and the populations of local species (e.g. [5,6]). Given these impacts, there is increased interest in understanding the processes that allow successful introductions of NIS to occur.

Researchers have long noted that certain regions and habitats appear to be particularly susceptible to invasions [7,8]. This variability was originally explained by Elton as the ability of species-rich systems to safeguard against invasions [1] (see also [9–12]). Several experimental studies have investigated the role of native species diversity in resistance to invasions, and indicated reduced success of NIS with increased native species diversity [7,13–15], while observational studies have shown the opposite [9,16].

Despite these equivocal results, biotic resistance has become one of the guiding paradigms of invasion biology (e.g. [17]). The ‘insurance hypothesis’, a variant of biotic resistance, holds that species diversity provides assurance that some native species will use the majority of resources even if others fail to thrive, which leads to decreased opportunities for NIS [18,19]. For example, unoccupied space within a community could be a crucial limiting resource for NIS in some sessile invertebrate assemblages [20,21]. In previous studies, cover and survival of sessile invertebrate NIS decreased with increasing native species richness because at least one native species was always occupying space in the high-diversity communities [7,8,19]. However, if diversity and cover are correlated, it is not clear whether diversity or limited resources each contribute to invasion outcomes.
Table 1. Species biogeographic status (based on [24]) and combinations used in experimental treatments. Native status is designated as N for native or I for introduced.

<table>
<thead>
<tr>
<th>monoculture</th>
<th>medium diversity</th>
<th>high diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botryllioidea violaceus (I)</td>
<td>Botryllus 'schloesseri' (I) W. subtorquata (I) M. senile (N) B. ramosa (N)</td>
<td>Botryllus 'schloesseri' (I) W. subtorquata (I) Bugula neritina (I) D. listerianum (I) M. californianus (N) B. ramosa (N) C. californianus (N) B. ramosa (N)</td>
</tr>
<tr>
<td>Watersipora subtorquata (I)</td>
<td>W. subtorquata (I) B. violaceus (I) Eudistylia polymorpha (N) B. ramosus (N)</td>
<td>W. subtorquata (I) B. violaceus (I) Bugula neritina (I) Ciona savignyi (I) Eudistylia polymorpha (N) B. ramosa (N) A. ceratodes (N) M. senile (N)</td>
</tr>
<tr>
<td>Mytilus galloprovincialis (I)</td>
<td>M. galloprovincialis (I) B. violaceus (I) A. ceratodes (N) C. californianus (N)</td>
<td>M. galloprovincialis (I) B. violaceus (I) Bugula neritina (I) Botryllus 'schloesseri' (I) A. ceratodes (N) C. californianus (N) Barentsia ramosa (N) Distaplia occidentalis (N)</td>
</tr>
<tr>
<td>Diplosoma listerianum (I)</td>
<td>Ciona savignyi (I) D. listerianum (I) Aplidium californicum (N) B. ramosa (N)</td>
<td>Ciona savignyi (I) D. listerianum (I) W. subtorquata (I) B. violaceus (I) Aplidium californicum (N) Barentsia ramosa (N) Distaplia occidentalis (N) Mytilus californianus (N)</td>
</tr>
<tr>
<td>Corynactis californica (N)</td>
<td>A. ceratodes (N) Distaplia occidentalis (N) Corynactis californica (N) Barentsia ramosa (N)</td>
<td></td>
</tr>
<tr>
<td>Metridium senile (N)</td>
<td>Distaplia occidentalis (N) M. senile (N)</td>
<td>Mytilus californianus (N) A. ceratodes (N)</td>
</tr>
</tbody>
</table>

The large number of factors possibly influencing the invasion process has motivated a search for which are most important (e.g. native diversity, free space, prior presence of NIS) [22]. Field experiments often investigate NIS success by manipulating one or two treatment variables and often yield conflicting results (e.g. [7,8,19,23]). These contradictory conclusions highlight the need for more complex experiments.

The objective of this study was to explore the relationship between NIS success and (i) species richness, (ii) available space and (iii) the percentage of native species within the community. For the purpose of this study, NIS success was defined as recruitment and growth of an NIS individual to a size large enough to be evident after the first sampling period. No losses were evident after the first sampling period.

The experiment manipulated three factors: diversity (one, four and eight species), amount of free space (low, 20–49%; high, 50–90%), and percentage of native species (0% in monoculture treatments only, 50% or 100%) (table 2). Percentage of native species was based on richness in each treatment (i.e. when eight species were used and four were native, percentage of native species was 50%).

All of the 12 treatments were assembled with random selection of native and/or NIS. Table 1 shows the 22 species combinations; each of these was executed at low and high cover (44 treatments). For example, the monoculture treatments included a tile of Ascidia ceratodes at low cover and high cover, a tile of Watersipora subtorquata at low cover and high cover, etc. Random species combinations spread species-specific effects among treatments, thereby reducing the likelihood of bias because of key inhibitors or facilitators [19,25]. Blank tiles (hung horizontally and vertically) were deployed as recruitment controls, and tiles with glue as controls for potential effects of the

2. Material and methods

Adult individuals of 16 species (nine native and seven NIS) that inhabit Monterey Harbor were collected in June 2012 (table 1;
Owing to low light caused by turbidity from an approaching storm, one block was not photographed on 24 September. This block was removed from all analyses, and there was no loss of power with the decreased sample size [31]. Owing to loss of organisms in the first 3 days after deployment, categorical treatment levels were set aside. Instead, species richness (one to eight species), free space (0–78%) and percentage native species (0–100%) were treated as continuous variables based on photographs taken three days after initial deployment; after this time there was no visible mortality or loss of the original organisms. Failure of attachment seemed to affect all taxa and blocks equally with the exception of monocultures of the sea anemone Metridium senile, in which most individuals migrated off the tiles. Tiles that lost all organisms were excluded from analyses, leaving 227 tiles.

Recruitment (counts of recruits, with Poisson distribution) was analysed with a generalized linear mixed effects (GLMM) model (log-link) [32–34] fitted by Laplace approximation with treatments as fixed factors, and time and blocks as random factors [33]. The exact combination of factors in the best-fit model varied based on time point and/or the response variable being tested. Predictor variables were centred (the mean was subtracted from each value) and the best-fit models determined based on the Akaike information criterion (AIC) [35]. R² values reported were based on formulae for conditional and marginal R² measurements [36].

3. Results

During the 100-day deployment (30 June–7 October 2012), 10 species recruited to tiles, five of which were not used in assembling any original treatment (electronic supplementary material, figure S2; figure 1.d). All these species were previously observed in Monterey Harbor and represented four phyla. The majority of all recruits are ascidians, which are known to reproduce year-round in Monterey Harbor (e.g. Botryllus ‘schlosseri’ [35]). The ascidians Diplosoma lysterianum and Botryloides violaceus recruited to experimental tiles multiple times during the experiment. Blank and glue controls did not significantly differ in recruitment (F₁,₁₈ = 0.982, p = 0.335) and were excluded from the analyses below.

The GLMM revealed that all factors tested (richness, percentage cover and percentage of native species) and one interaction had significant effects on recruitment (regardless of native status) during this experiment (table 3 and figure 2). This best-fit model (lowest AIC value) incorporated block as the random factor, allowing for assessment of block specific responses. This full GLMM had a conditional R² (R²ᶜ) value of 0.845, while the fixed effects alone on the latent scale had a marginal R² (R²ᵐ) of 0.465 (electronic supplementary material, table S3). This difference shows that block and time have large effects in the model and explain an additional 38% of the variability.

Species-rich communities experienced less recruitment than species-poor communities, supporting the hypothesis, but there was a significant interaction with the initial amount of cover (table 3 and figure 1a). Recruitment to tiles with low levels of richness decreased with increasing cover, while tiles with high richness received little recruitment, regardless of level of cover, resulting in the significant interaction between these factors (figure 2).

Over the course of the experiment, percentage cover on tiles did not reach 100%; the highest recorded was 80%, suggesting that this is the maximum ‘winter’ cover for tiles of the size used. Overall, treatments with less free space received less recruitment over time, supporting the hypothesis that free space facilitates recruitment. However, the interaction of species richness and cover, discussed above, indicates that the effect of space can be modified by other factors (figures 1b, 2; table 3).

Assemblages with initially more native species had significantly less successful recruitment than assemblages with more

<table>
<thead>
<tr>
<th>diversity level</th>
<th>free space</th>
<th>percentage of native species</th>
</tr>
</thead>
<tbody>
<tr>
<td>monoculture</td>
<td>low (20–50%)</td>
<td>low (0%)</td>
</tr>
<tr>
<td></td>
<td>high (50–90%)</td>
<td>high (100%)</td>
</tr>
<tr>
<td>medium (four species)</td>
<td>low (20–50%)</td>
<td>low (50%)</td>
</tr>
<tr>
<td></td>
<td>high (50–90%)</td>
<td>high (100%)</td>
</tr>
<tr>
<td>high (eight species)</td>
<td>low (20–50%)</td>
<td>low (50%)</td>
</tr>
<tr>
<td></td>
<td>high (50–90%)</td>
<td>high (100%)</td>
</tr>
</tbody>
</table>
This result supports the hypothesis that increased native richness decreased successful recruitment of all species studied (figure 1c; electronic supplementary material, figure S2c). However, the coefficient for this factor was an order of magnitude smaller than that of the others, suggesting that is a weak predictor of recruitment success (table 3).

Because the majority of recruitment occurred in the first two months of the experiment, a GLMM was applied separately to the first 57 days of data. This revealed a positive
4. Discussion

Our results indicate that interactions among all manipulated factors determine the risk of invasion at the time and spatial scales investigated. In particular, we found that species richness (including both NIS and native species) consistently interacts with available space, though the relationship varied over time. Assemblages with high richness received less recruitment than monocultures regardless of their initial cover, but communities with high richness and high prior cover received the least amount of recruitment (figure 1a). These results support the premise of Elton’s biotic resistance hypothesis, but also indicate that factors other than species richness contribute to invasion patterns. At most time points, communities with higher total resident species richness (native and NIS) received less recruitment, suggesting that both native and NIS richness contribute to a community’s stability.

The probability of a successful invasion depends on resource availability and species interactions, as well as the timing of the recruitment by NIS [36]. Previous experiments suggested that complementary resource utilization allowed more diverse communities to resist invasions, as species-rich communities were better able to pre-empt space, leaving little resources for invaders [7,8,15]. Prior results, however, may confound available space and diversity. In our study, diverse communities received little recruitment at all levels of cover and communities contained some level of available space throughout the experiment. In our study, species-rich communities resisted new recruitment by mechanisms other than space exploitation, and space was not the only limiting factor in these communities.

Factors not tested here (e.g. neighbour growth, productivity, or trophic group) may explain the significant interactions between species richness and initial cover found in this study (e.g. [37–39]). While available primary space was negatively related to recruitment in this experiment, adult organisms (both native and NIS) can provide settlement cues or substrates [40]. For example, *D. listerianum* and *B. violaceus*, both NIS, were observed settling on adult native species such as *Mytilus californianus* and *A. ceratodes*. Thus, high prior cover did not act as absolute barrier to new recruitment.

Propagule pressure, here the availability of larvae, may also be extremely important in determining the likelihood of successful invasions [41,42]. In this study, adult NIS may have provided a source of larvae settling on the tiles. For example, the ascidian *D. listerianum* releases short-lived larvae that are immediately competent to settle [40]. Limited dispersal would lead to increased settlement near the parent and onto neighbouring treatment tiles. Differences in fecundity of adults in each treatment and on nearby structures may explain the differences between treatment blocks (table 3). The timing and size of these pulses in propagules could
explain differences in treatment effects at different time points in this experiment. Specifically, we suggest that the switch in effect of predictor variables between 57 and 71 days was because of a large pulse of recruitment seen at 45 days. A strong pulse of larvae could have overcome the inhibitory effects of species richness. Yet this effect was not long lasting; at the 71-day time point the negative influence of species richness returned. To account for the influence of episodically important factors on invasion success, we suggest that communities be monitored throughout an experiment.

During a 70-day fouling community study on the east coast of the United States, Stachowicz et al. [7] argued that native species richness protected against invasions. It is now known that many of the putatively native species used in their experiment were misclassified, and actually represent a mixture of cryptogenic and NIS [43,44]. Given this, their results show that as total species richness increased, invasion success decreased. However, too few combinations of strictly native species were tested to determine if native species were better able to resist new settlement than mixed or NIS communities. In our study, native species suppressed recruitment, but the effect was small when compared with other factors. Total species richness is more important than species origins for resistance to invasions.

The interaction of resident diversity and prior cover in resisting recruitment demonstrates one example of the complex mechanisms that determine the success of invasions. Artificial structures in coastal waters, like those studied here, provide a point of entry for newly arrived NIS and an advantageous place to study marine invasions [24,44,45]. While this study specifically addressed marine invasions, we suggest that interactions among contributing processes are important for controlling invasions in other ecosystems. This new understanding may explain contradictory conclusions seen in previous literature [9,17]. Finally, this experiment investigated invasion processes at a patch scale in an already invaded landscape; how these communities would resist entirely new NIS remains undetermined, but we predict that patches of communities with low cover and low diversity provide opportunities for new NIS to become established.

Ethics. Collection of organisms was approved by the California Department of Fish and Wildlife, permit no. SC-11868.

Data accessibility. Raw data are available on Dryad (http://dx.doi.org/10.5061/dryad.p9801).

Authors’ contributions. M.L.M. conceived and designed the study, carried out field and molecular laboratory work, collected and analysed data, and drafted the manuscript; J.B.G. participated in the design of this study and helped draft the manuscript. Both the authors gave final approval for publication.

Competing interests. We declare we have no competing interests.

Funding. Funding sources of Harvey Fellowship, MLML Wave Award, International Women’s Fishing Hall of Fame Scholarship and Meyers’ Oceanographic Trust Scholarship generously gave funds associated with the collection of this data.

Acknowledgements. We would like to thank the dive programmes at Moss Landing Marine Laboratories, Marilyn Cruickshank and volunteers who helped collect this data. We would also like to acknowledge Hannelore Rose and Max Butensky for their help with photo analysis, and Deasy Lontoh, Tomo Eguchi and Scott Hamilton for their assistance with the analysis. We thank Greg Ruiz, Scott Hamilton, Andy Chang and anonymous reviewers for their comments and insight on this manuscript.

References

5. California Department of Fish and Game. 2008 California aquatic invasive species management plan. Aquatic Sciences.
20. Dayton P. 1971 Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal...

