Dynamic resource allocation between pre- and postcopulatory episodes of sexual selection determines competitive fertilization success

Marion Mehlis, Ingolf P. Rick and Theo C. M. Bakker

Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany

In polyandrous mating systems, male reproductive success depends on both mate-acquisition traits (precopulatory) and sperm competitive abilities (postcopulatory). Empirical data on the interaction between these traits are inconsistent; revealing positive, negative or no relationships. It is generally expected that the investment in pre- and postcopulatory traits is mediated by environmental conditions. To test how dietary resource availability affects sexual ornamentation, sperm quality and their interrelationship in threespined sticklebacks (Gasterosteus aculeatus), full-sibling groups were raised under three conditions differing in food quantity and/or quality (i.e. carotenoid content): (i) high-quantity/high-quality, (ii) high-quantity/low-quality or (iii) low-quantity/low-quality. After 1 year of feeding, food-restricted males developed a more intense breeding coloration and faster sperm compared with their well-fed brothers, indicating that they allocated relatively more in pre- and postcopulatory traits. Moreover, they outcompeted their well-fed, carotenoid-supplemented brothers in sperm competition trials with equal numbers of competing sperm, suggesting that food-restricted males maximize their present reproductive success. This may result in reduced future reproductive opportunities as food-restricted males suffered from a higher mortality, had an overall reduced body size, and sperm number available for fertilization. In accordance with theory, a trade-off between the investment in pre- and postcopulatory traits was observed in food-restricted males, whereas well-fed males were able to allocate to both traits resulting in a significantly positive relationship.

1. Background

Sexual selection is known to force the evolution of male fitness-enhancing life-history traits [1]. In polyandrous mating systems, this can be achieved through both mate-acquisition traits (precopulatory) and sperm competitive abilities (postcopulatory). In precopulatory sexual selection, male mating success depends on the expression of extravagant phenotypic traits such as sexual ornamentation, or weapons [1]. In addition, when females copulate or spawn with more than one male sexual selection continues after mating, with sperm of two or more males competing against each other for the fertilization of eggs [2]. It is expected that sperm competitiveness is related to both sperm quantity and sperm quality traits (see [3] and citations therein). Consequently, a male’s competitiveness during both pre- and postcopulatory sexual selection has a considerable effect on his overall fitness [4]. Thus, disentangling the contribution of pre- as well as postcopulatory mechanisms is important [5–7]. However, empirical data on the intraspecific level are inconsistent, showing either a positive relationship (e.g. [8]), a trade-off (e.g. [9]) or no association (e.g. [10]) between both sexual selection episodes.

The evolution of life-history strategies within a population is known to be affected by environmental conditions (e.g. [11]). The availability of resources strongly influences an individual’s ability to modulate investment in sexually
selected traits. As the production and maintenance of traits mediated by pre- and postcopulatory sexual selection is energetically demanding [12,13], an increased investment in traits subject to both episodes of sexual selection can be expected under conditions of high resource availability. By contrast, under limitation an increased allocation in one function often results in a decreased resource availability for alternative functions [14], leading to one of the major predictions of sperm competition theory that a male’s investment should be traded-off between pre- and postcopulatory traits [15].

Experimental manipulation of diet is a suitable approach to explore the impact of variation in resource availability on the expression of pre- and postcopulatory traits and their interrelationship. For example, a low-quantity diet is known to negatively affect reproductive output (e.g. [16]), whereas high food quality positively influences male reproductive performance (e.g. [17]), for instance by enhancing sperm competitiveness [18]. The latter is probably owing to increased antioxidant levels in the ingested diet, which are involved in the protection of sperm plasma membrane and DNA against oxidative stress (e.g. [19]). In addition to several examples on the adverse consequences of low food quantity and/or quality on postcopulatory sexual traits across a wide range of taxa [20,21], precopulatory sexual traits can also be negatively affected. In particular, the expression of conspicuous sexually selected male colour traits depends on food quantity and/or quality (e.g. [22]). Male sexual coloration is often based on carotenoid pigments that have to be acquired through diet and are an important source of antioxidants and immunostimulants [23]. Thus, the limited availability of carotenoids can lead to trade-offs between fitness-relevant life-history traits, such as ornamental pigmentation, sperm function as well as antioxidant defence and immunocompetence, thereby maintaining the honesty of carotenoid-based signals (e.g. [24]), but see [25]. However, the majority of studies dealing with the impact of diet on trait expression in males have focused on either pre- or postcopulatory sexual selection. Empirical research has only recently started to take diet effects into the interrelationship between both stages into account (e.g. [26–29]).

In the three-spined stickleback (Gasterosteus aculeatus), the carotenoid-based orange-red breeding coloration of males is one of the key determinants of female mate choice decisions (e.g. [30]). During the breeding cycle (April–August), territorial stickleback males accumulate the eggs of several females in their nest. The risk of sperm competition is high under natural conditions as stickleback males often try to steal fertilizations in nests of neighbouring males (e.g. [31]). A former study revealed that under non-competitive conditions the expression of male breeding coloration is positively correlated with the proportion of fertilized eggs and males fed a high carotenoid diet have an increased functional fertility [32]. Moreover, sperm velocity in sticklebacks was recently found to be positively related to male attractiveness [33]. These findings are in accordance with the so-called phenotype-linked fertility hypothesis (PLFH), which predicts that males with conspicuous sexual ornaments signal their superior fertilization efficiency to females, which will gain direct fecundity benefits by preferring highly ornamented males [34]. Empirical evidence for the PLFH has also been provided by some further studies revealing positive correlations between pre- and postcopulatory traits (e.g. [8]). However, a recent meta-analysis found little support for the PLFH [35] and in line with the aforementioned sperm competition theory, a trade-off between the investment in pre- and postcopulatory traits is expected especially under resource limitation [15].

In this study, we used laboratory-bred stickleback males to examine how resource availability in terms of experimentally manipulated diet quality (i.e. carotenoid content) and quantity affects life-history traits and the relationship between the expression of both pre- and postcopulatory sexually selected traits. Individuals were raised under standardized conditions and underwent three different feeding treatments: (i) high-quantity/high-quality [+ +], (ii) high-quantity/low-quality [+ −] or (iii) low-quantity/low-quality [− −]. Across all treatments full-sibling groups were used, thereby controlling for genetic background. After 1 year of feeding, the effects on growth and mortality as well as on pre- (i.e. breeding coloration) and postcopulatory sexual traits (i.e. testis mass, sperm number, sperm swimming ability) were quantified. Our prediction was that males from the two high-quantity treatments would be able to highly invest in the expression of both pre- and postcopulatory traits, which should become more pronounced in males that received the carotenoid-supplemented diet. By contrast, food-limited males were expected to show a negative relationship between the expression of pre- and postcopulatory traits indicating an allocation trade-off. In addition, to obtain a direct measure of fertilization success we compared sperm competitiveness of brothers from different treatments using the in vitro fertilization technique and subsequent paternity analysis.

2. Material and methods

(a) Experimental subjects

Three-spined sticklebacks from a large anadromous population were caught during their spring migration in April 2010 on the island of Texel, the Netherlands. To create different family groups, a randomly chosen male was allowed to spawn with a randomly chosen female (25 May–19 June 2010). In total, 25 clutches were produced and parents were only used once. To exclude paternal effects clutches were removed from the males’ nests 2 h after fertilization and split into three equally portioned full-sibling sub-groups, which were separately placed in 11 containers measuring 10 × 17 × 11 cm (length × width × height). After hatching, juveniles were fed daily using the same diet (Artemia nauplii). With increasing age and body size, groups were transferred into larger holding tanks (age: 3 weeks, 30 × 20 × 20 cm; 10 weeks, 50 × 30 × 30 cm). To control for density effects, group size was reduced to 30 individuals per tank at an age of eight weeks. At this time point, each of the three family sub-groups was randomly assigned to one out of three diet treatments, which differed in food quantity and/or food quality. Overall, two types of food were provided; first, ‘normal’ red mosquito larvae (Chironomus spp.), which contain moderate levels of lutein [36] and second, carotenoid-enriched red mosquito larvae, which additionally contain high levels of astaxanthin (AHA Frostfutter, Duisburg, Germany). Astaxanthin is an important component of sticklebacks’ natural diet and represents one of the main carotenoids incorporated in the integument of stickleback males [37,38]. Carotenoid-enriched larvae were commercially produced by depositing them in water that contained 2 g of 10% pure astaxanthin per litre for 1 h before they were frozen. Individuals of one group were fed with carotenoid-enriched larvae every day (high-quantity/high-quality diet, [ + +]). The second group received a daily portion of ‘normal’ larvae (high-quantity/low-quality diet, [ − −]), whereas the third group was provided with...
‘normal’ larvae every second day (low-quantity/low-quality diet \([- -]\)).

Holding tanks were placed in an air-conditioned room (17 ± 1 °C) under standardized light-regimes (summer until 19 September 2010: day length 16 L : 8 D; autumn until 14 November 2010: 12 L : 12 D; winter until 28 March 2011: 8 L : 16 D; spring until 9 May 2011: 12 L : 12 D; summer until 14 August 2011: 16 L : 8 D). On 15 November 2010, body measures (body size and mass, to the nearest millimetre and milligram, respectively) of six randomly chosen sub-adult individuals per tank were taken to determine average developmental growth rate. In addition, for each group mortality was determined for a time period of about nine months, i.e. between the beginning of the feeding treatment and the start of the reproductive phase (8 May 2011).

(b) Experimental procedure
As sexual maturation in sticklebacks is stimulated by long photoperiods [39], data acquisition took place during summer conditions (2 June–8 July 2011). Males that showed signs of nuptial coloration were individually isolated in separate tanks (30 × 20 × 20 cm), each equipped with a sand-filled Petri dish (9 cm) and 2 g javea moss (Vesicularia dubya) for nest building. Shortly before isolation male’s body size and mass were measured. Food-restricted males were isolated only on days on which they received food. After isolation, all males were still fed according to their previous feeding treatment. In standardized in vitro fertilization experiments, three full-sibling brothers were allowed to compete pairwise against each other for egg fertilization ([+ +] versus [- -], [+] versus [-] and [+] versus [-] (see below for details)). In vitro fertilization experiments took place on average 4–7 days after nest completion and only on days on which all males were fed. In addition, all brothers used in one experiment had to have finished nest building within the same 2 day time interval.

Prior to an in vitro fertilization experiment, a receptive female (wild-caught in April 2011 from the same population) served to stimulate the male. Directly after stimulation, male body measurements were taken again. The expression of breeding coloration was then quantified using a reflectance spectrophotometer (Avantes AvaSpec-2048, Eerbeek, The Netherlands) connected to a deuterium–halogen light source (Avantes DH-S) [40]. To quantify how female conspecifics might perceive the breeding coloration of males, the measured spectra were incorporated in a physiological model on stickleback colour vision. A detailed description of the reflectance measurements and the used parameters for the formulation of the model is given in a previous study [40] and in the electronic supplementary material. Directly after reflectance measurements, a male was quickly killed by decapitation in order to dissect and weigh the testes to calculate the relative testis mass (gonadosomatic index, GSI) after de Vlamming et al. [41]. To quantify sperm swimming abilities, the testis was pestled in 500 μl artificial ‘ovarian fluid’ (3.0 g NaCl, 0.1 g KCl, 0.07 g CaCl₂ in 1 l distilled water after [42]; see [31] and the electronic supplementary material for further details). In addition, the right testis was put in 500 μl of a non-activating medium (for mixture see [43]) for subsequent in vitro fertilization.

(c) In vitro fertilization experiment
For all three brothers that participated in one in vitro set of fertilization experiments data acquisition (reflectance measurements, measurements of sperm swimming abilities) was time-shifted by 15 min. To exclude sequence effects, this was done in random order. The same receptive female was used for each male’s stimulation.

For sperm number quantification the right testis of each male (previously stored in 500 μl non-activating medium) was pestled (see [44] for details). Sperm number was quantified prior to fertilization to ensure that an equal number of each male’s sperm was used during the fertilization process as males showed considerable variation in sperm number (range: 2.75–23.5 × 10⁷). Thereafter, different volumes of each male’s sperm suspension (containing 10 million spermatozoa) were filled up with non-activating medium to obtain a constant total volume of 500 μl for fertilization. This resulted in three Eppendorf-tubes containing 20 million spermatozoa in total, each comprising an equally portioned sperm mixture of two brothers for each sub-trial ([+] versus [-], [+] versus [-] or [+] versus [-]). By keeping sperm number constant, it was possible to control for potential confounding effects between sperm quantity and quality (e.g. [45]).

Immediately thereafter, the same female, which had been used for the stimulation of the males was gently stripped, which is a common method and does not harm the fish (e.g. [46–48]). All eggs were counted and in each case 40 eggs (39.46 ± 0.97, mean ± standard deviation, 2486 in total) were placed in each of three small glass Petri dishes that already contained 1 ml of tap water, resulting in a sperm to egg ratio of 250 000 : 1 per male. Using a pipette, one sperm mixture was carefully released over one egg portion. One hour later, the fertilization process was stopped using sparkling water, which does not harm the eggs [46]. Eggs of each sub-trial were separately stored in an aerated container (1). After 24 h, fertilization rate was checked using a binocular microscope (Leica SBAPO, Wetzlar, Germany). In total, 2318 eggs were fertilized and stored in 99.8% ethanol at −18 °C for paternity analyses. The whole procedure was repeated 21 times using different families, resulting in 63 sub-trials. Females that participated in an in vitro fertilization experiment (n = 21) were marked by cutting the tip of a spine that was preserved in 99.8% ethanol at −18 °C for subsequent paternity analysis. Directly thereafter, they were returned to their holding tank to avoid repeated use and thus pseudoreplication. Furthermore, spine and tissue samples of the 63 putative fathers were additionally preserved in 99.8% ethanol at −18 °C for paternity analysis.

(d) Paternity analysis
To check for differences in fertilization success, nine highly polymorphic microsatellite markers were available (see the electronic supplementary material, table S2). DNA-samples of all parents (n_{father} = 63, n_{mother} = 21) and eggs were extracted via Chelex (Bio-Rad; after [49]). In a subsequent PCR two, three or four microsatellite loci were multiplexed. PCR-products were run on a CEQ 8800 Genetic Analysis System (Beckman Coulter, Krefeld, Germany; see the electronic supplementary material, tables S2 and S3 for details). Only eggs that could be clearly (100%) assigned to one father were included in the statistical analyses (see the electronic supplementary material, table S2 for details).

(e) Statistical analyses
Statistical analyses were performed using SPSS 15.0 and R 3.0.2 statistical packages. Data were tested for normality (Kolmogorov–Smirnov tests with Lilliefors correction) and homogeneity of variances (Levene tests). Parametric statistics were used when these criteria were fulfilled, otherwise data were transformed (inverse transformation of body mass of adult individuals) or non-parametric statistics were applied. In detail, linear mixed effects models were fitted using the ‘lme’ function of the ‘nlme’ package. Models were constructed using a measured variable as dependent variable (see table 1 for an overview, except percentage motile sperm and mortality, see below) and feeding treatment and each fertilization sub-trial (pairwise comparison), respectively, as explanatory variable. To investigate the effect of sperm velocity on fertilization success, mean values for both variables were calculated for the respective focal male relative to both competitors ([ (focal male – competitor 1) + (focal male – competitor 2)]/2). In addition, a potential interaction between sperm velocity and feeding treatment on fertilization
success was tested. To check for differences between the daily-fed (irrespective of food composition) and food-restricted males concerning their investment in pre- and postcopulatory sexually selected traits (achieved chroma ($r_A$, i.e. colour intensity) and sperm velocity) a further linear model was conducted. Here, sperm velocity was used as dependent variable. Achieved chroma ($r_A$), food restriction (yes/no) and the interaction between these two variables were included as explanatory variables. Generalized mixed effects models using the ‘glimer’ function with a binomial error distribution and logit link function in the ‘lme4’ package were fitted to analyse the proportional data percentage of motile sperm and mortality. In all models, family identity was integrated as a random factor and never removed to control for genotype influences (see the electronic supplementary material, table S4 for a list of all fitted models). Non-significant factors were removed from the model and tests of significance were based on likelihood-ratio tests following a $\chi^2$ distribution. Test probabilities are two-tailed throughout and the level of significance was set at 0.05.

3. Results

(a) Feeding effects

The results revealed that male phenotype was considerably affected by the three feeding treatments (see table 1 for an overview and the electronic supplementary material, table S5 for means ± standard deviations). In detail, the pairwise comparisons showed that under food limitation [- -] sub-adult fish were on average significantly smaller and lighter than their full-siblings (all $p < 0.001$; table 1), whereas daily-fed sub-adults ([+ +] and [+ -]) did not differ significantly in body measures irrespective of food quality (both $p ≥ 0.404$; table 1). At the adult stage, males that received the restricted diet were still significantly smaller and lighter than their daily-fed brothers (all $p < 0.001$; table 1). However, after about 1 year of feeding males that belonged to the high-quantity/high-quality [+ +] group were significantly larger ($p = 0.006$; table 1) but not heavier than their high-quantity/low-quality [+ -] fed brothers ($p = 0.087$; table 1). Data analyses of adult males were done with averaged body variables as they were determined twice during the experimental procedure. In addition, significantly fewer individuals from the low-quantity/low-quality [- -] group reached the reproductive season (both $p < 0.001$; table 1), whereas the daily-fed males did not differ significantly concerning their mortality until adulthood ($p = 0.083$; table 1). However, mortality was determined over a period of about nine months and it is worth mentioning that the absolute number of individuals which died during this time was comparatively low (mean ± standard deviation: 2.48 ± 1.60 [+ +], 3.33 ± 2.87 [+ -] and 7.62 ± 2.84 [- -]). In addition, during the experimental procedure only one male died after isolation and before nest completion (high-quantity/low-quality [+ +]) and was thus replaced.

Males that received the astaxanthin-enriched larvae [+ +] had a significantly more red-shifted breeding coloration (lower $\theta$) in comparison with their brothers (both $p < 0.001$; table 1; figure 1). The two groups that were fed with ‘normal’ larvae ([+ -] and [- -]) did not differ significantly in their rather orange-red breeding coloration ($p = 0.133$; table 1; figure 1). However, males from the low-quantity/low-quality group [- -] developed a more intense breeding
of motile sperm were not significantly different between the other (high-quality significantly faster sperm than their brothers (high-quantity/sperm number (both differ significantly with respect to absolute testis mass and consequently more sperm when compared with their food-restricted brothers and daily-fed groups (p = 0.119; table 1; figure 1). Achieved chroma (rrA) was not significantly different between the two daily-fed groups (p = 0.076; table 1) but daily-fed males ([+ +] and [+ −]) exhibited both a significantly higher absolute testis mass and consequently more sperm when compared with their food-restricted brothers [− −] (all p < 0.001; table 1). However, males from the high-quantity/high-quality [+ +] and the high-quantity/low-quality [+ −] diet group did not differ significantly with respect to absolute testis mass and sperm number (both p ≥ 0.249; table 1).

Low-quantity/low-quality [− −] fed males had significantly faster sperm than their brothers (high-quantity/ high-quality [+ +], p < 0.001; high-quantity/low-quality [+ −], p = 0.008; table 1). Sperm velocity of daily-fed males ([+ +] and [+ −]) did not differ significantly from each other (p = 0.363; table 1). Sperm linearity and the percentage of motile sperm were not significantly different between the three treatment groups (all p ≥ 0.051; table 1).

(b) Paternity analysis
Food-restricted males [− −] had a higher fertilization success when competing against high-quantity/high-quality fed males ([+ +]) (‘Ime’, n = 42, χ² = 5.092, p = 0.024), whereas in the two other sub-trials ([+ +] versus [− −] and [+] versus [− −]) fertilization success did not differ significantly between males from the different treatments (‘Ime’, n = 42, both χ² ≤ 1.626, both p ≥ 0.202). Moreover, mean fertilization success was significantly positively associated with mean sperm velocity (‘Ime’, n = 63, χ² = 10.076, p = 0.002; figure 2). This relationship was not significantly affected by the different feeding treatments (‘Ime’, n = 63, χ² = 0.855, p = 0.652).

(c) Relationship between pre- and postcopulatory traits
There was a significant interaction between males from the three feeding treatments concerning the investment in pre- and postcopulatory sexually selected traits (‘Ime’, n = 63, χ² = 12.690, p = 0.002; figure 3). Under food limitation [− −], a significantly negative association between achieved chroma (rrA) and sperm velocity was observed (Pearson correlation: n = 21, rP = −0.454, p = 0.039; figure 3). By contrast, males from the daily-fed groups ([+ +] and [+] versus [− −]) developed a significantly positive relationship between achieved chroma (rrA) and sperm velocity (Pearson correlation: n = 42, rP = 0.326, p = 0.035; figure 3).

4. Discussion
Our study provides experimental evidence that life-history traits such as body growth, mortality and reproductive performance in full-sibling stickleback males were considerably affected through environmental conditions. Food-restricted males [− −] showed a phenotypically plastic response in terms of a substantial reduction in body size and mass during sub-adult and adult stages compared with their daily-fed brothers. A reduction in growth and body size is one of the most profound effects associated with lower levels of energy intake during ontogeny (e.g. [50]). Food limitation...
Although being smaller, males from the low-quantity/low-quality \([- - \) group had a more intense breeding coloration compared with males from the two other diet groups, which is in line with further studies on sexual signalling effort in sticklebacks (see [54] and citations therein). This suggests that, in accordance with theoretical predictions [55], males with a lower overall food intake showed an enhanced relative investment of carotenoid pigments in sexual ornamentation at least for the first breeding cycle that was studied here. An increased concentration of carotenoid pigments in the cheek region leads to a more saturated male breeding coloration [56], which is generally preferred by female conspecifics during mate choice [30]. Our findings thus reveal that food-restricted males may have improved their chances of recent reproduction through an increased attractiveness to females, which in turn might be associated with a reduction in future signalling effort in contrast with larger well-fed males. For instance, a study by Candolin [57] showed that larger males who completed several breeding cycles were able to increase their red coloration over the season, whereas small males that completed only few cycles did not. Pike et al. [58] demonstrated that stickleback males reared on a carotenoid-limited diet maintain their breeding coloration at the expense of total body carotenoids resulting in negative consequences for future reproductive investment and longevity. Males fed the carotenoid-enriched diet in the present study had a more red-shifted coloration, despite showing a less intense breeding coloration. Apparently, this resulted from a higher proportion of astaxanthin deposited in the integument of these males [56]. By contrast, male coloration in the low-quality dietary treatments (irrespective of food quantity \([+ +] \) and \([- -\) was predominantly based on lutein that was ingested from the untreated chironomid larvae and differs from astaxanthin in its spectral absorbance characteristics, giving these males a rather orange ‘hue’ in human terms [38]. Although visual modelling suggests that sticklebacks are sensitive to variation in not only the concentration but also composition of carotenoids in a male’s breeding signal [56], the role of carotenoid ratios in mate choice is less clear (but see [59]) and deserves further behavioural investigations.

In addition to the effects on precopulatory traits, the availability of dietary resources had an impact also on postcopulatory traits. Food-limited males \([- -\) had faster sperm compared with their daily-fed brothers \([+ +\) and \([- -\) revealing that this component of sperm quality is sensitive to variation in nutritional conditions. Contrary to our findings, recent studies found positive effects of food quality on different measures of ejaculate quality (e.g. [18,20]). Despite the lower sperm swimming velocities, daily-fed males \([+ +\) and \([- -\) in our study had a higher absolute testis mass and greater sperm numbers compared with their food-limited brothers. This may be explained by the fact that males in these groups were significantly larger than those from the low-quantity/low-quality \([- -\) group. A larger body size in combination with an increased ejaculate size should be beneficial for future reproductive opportunities [57]. On the other hand, the increased sperm velocity and elaborated sexual ornamentation in the low-quantity diet males implies that under food limitation available resources are allocated from somatic functions to increased expression of both pre- and postcopulatory traits, presumably at the expense of future reproductive performance (see also...
One might assume that selective survival or group density effects owing to a higher mortality during development in the [−] treatment may account for our findings that the food-restricted males showed an increased investment in pre- as well as postcopulatory sexually selected traits. However, the absolute difference in survival was about four individuals of unknown sex from a total of 30 fish per tank (see also the electronic supplementary material, table S5). We reran our statistical analyses without the four least intensely coloured males from the [+ +] as well as from the [+ −] diet group. Results were qualitatively the same (see the electronic supplementary material, table S6 for statistics), indicating that significant selection in the [+ −] group relative to the males in the other diet groups ([+ +] and [+ −]) can be ruled out.

During pairwise sperm competition trials, food-limited males [−] outcompeted their brothers from the high-quality/high-quality group [+] by achieving a significantly greater paternity share when males contributed equal sperm numbers. Moreover, for all diet groups mean sperm quality was best explained by mean sperm velocity, revealing that sperm velocity is an important determinant of sperm competitiveness in sticklebacks, as it has been described for other species (e.g. [61]). In this study, sperm number was kept constant during in vitro fertilization assays. Nevertheless, a potential interaction between sperm number (in fact ejaculate size, e.g. [62]) and velocity, as suggested by a recent stickleback study [45], affecting fertilization success under natural conditions cannot be ruled out and requires further investigations. Three-spined stickleback males are sperm-limited over the course of one breeding season as spermatogenesis only occurs during the short photoperiods [39]. Thus, apart from sperm velocity, sperm quantity additionally represents an important factor of a male’s reproductive success (e.g. [62]). Therefore, it can be speculated that under natural conditions males from the high-quality/high-quality group [+] as well as from the high-quality/low-quality [−] diet groups might have an overall greater lifetime reproductive success owing to their higher number of stored sperm.

Consistent with our predictions and sperm competition theory [13], a negative relationship between the intensity of male breeding coloration and sperm velocity was found in food-restricted males [−], suggesting that these individuals had to allocate their resources between pre- and postcopulatory sexually selected traits. By contrast, their daily-fed brothers ([+] and [−]) showed a positive relationship between the intensity of their orange-red breeding coloration and sperm velocity irrespective of food quality (see also [33]), indicating the ability to allocate to both pre- and postcopulatory traits under conditions of high resource availability [14]. The intensity of carotenoid-based breeding signals should provide females with honest information about male foraging ability [63] and the amount of carotenoids available for immunostimulation [24] or antioxidant functions [64]. Our results indicate that this may only account for well-fed males while under food limitation some dishonesty may occur [60]. This could lead to evolutionary constraints on the direction of pre- and postcopulatory sexually selected traits, which may have considerable consequences even on population level. Oxidative stress was identified as an important factor mediating the condition-dependent expression of both precopulatory (e.g. [65]) and postcopulatory traits (e.g. [18]). Although variation in male oxidative status is also likely to provide a proximate explanation for our findings (see also [28]), further research effort, including measures of antioxidant capacity and oxidative damage, is required before more definitive conclusions can be drawn.

5. Conclusion

To summarize, resource availability leads to a considerably plastic response by strongly affecting life-history traits when stickleback full-sibling brothers were raised under environmental conditions varying in food quantity and/or quality. Dietary manipulation simultaneously affected body growth, mortality and the expression of pre- and postcopulatory sexually selected traits as well as male competitive fertilization success through modulation of sperm swimming performance. Interestingly, under dietary limitation males showed an overall increased investment in both pre- and postcopulatory sexual traits, presumably to maximize their chances of present reproduction at the expense of future reproductive opportunities. Recent studies found that dietary restriction in male guppies does not expose an allocation trade-off between pre- and postcopulatory sexual traits [26,27]. While a direct comparison between stickleback and guppy mating systems is difficult owing to the fact that the guppy is an internally fertilizing species exhibiting cryptic female choice (e.g. [66]), our findings illustrate that, consistent with various theoretical predictions [15,34], reproductive investment between pre- and postcopulatory traits is traded-off under resource limitation, whereas a positive relationship between pre- and postcopulatory traits is present when resources are not limited.

References


