Why does offspring size affect performance? Integrating metabolic scaling with life-history theory

Amanda K. Pettersen1, Craig R. White2 and Dustin J. Marshall1

1School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
2School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia

Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects—larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed.

1. Introduction

Offspring size is a key life-history trait that can affect all aspects of performance [1]. Within many taxa, larger offspring perform better than their smaller conspecifics; they survive, grow and reproduce more than smaller offspring [2–4]. Larger offspring can also be more resistant to predation and starvation and are often better competitors than smaller offspring [5–8]. Benefits of increased offspring size are not inevitable however, and they are not universal [3]. For example, in some instances, increased offspring size can confer a fitness disadvantage, where bigger offspring have higher mortality than smaller offspring [9]. Generally, offspring size effects manifest in early development, but they can persist throughout the life history affecting reproduction and even the performance of the subsequent generation [10]. Understanding the relationship between offspring size and performance is of fundamental importance to life-history theorists because this relationship should drive the evolution of offspring size and explain the massive variation in offspring size we observe among species [11]. While many studies have documented the offspring size–performance relationship, surprisingly few have identified why this relationship occurs.

There are several viable explanations for why larger offspring often perform better than smaller offspring. A general consensus is that bigger offspring tend to have more mass and so it is often inferred that larger offspring have more energy to devote to fitness-enhancing processes such as growth [12]. While it seems intuitive that larger offspring have more maternally derived energy in total, presumably the associated costs of maintaining a larger size must also be higher. It then follows that in order for larger offspring to have proportionally more energy, the ratio of energy to the combined costs of maintenance and construction must also be higher in larger offspring than in smaller offspring. So far, there is no evidence to support the hypothesis that larger offspring have proportionally more energy than small individuals. In fact, some studies suggest that...
larger offspring have lower levels of mass relative to volume and should have relatively less surplus energy [13,14]. Another potential explanation for the offspring size—performance relationship is the scaling of offspring size with structural components, such as feeding structures, which may allow larger offspring to better assimilate resources [15,16]. Several studies have also shown that larger hatching size reduces susceptibility to predation [6,9,17], however there are exceptions [18,19]. While these explanations are all plausible, they are unlikely to provide any common explanation for the effects of offspring size on performance across taxa; instead, their relevance will vary according to trophic mode and life history [20]. One explanation that has received little attention, although common to all organisms, is the interaction between offspring size and metabolic scaling.

Metabolic scaling with body size is one of the most ubiquitous and contentious relationships in biology. While there are many competing explanations for metabolic scaling with size and much controversy (see, for example, [21] for a recent review), there is a consensus that increases in mass rarely result in perfectly proportional increases in metabolism, rather the scaling exponent relating mass to metabolism is often less than 1 [22–24]. Because metabolic scaling with size is allometric, larger organisms have lower mass-specific metabolic rates than smaller organisms both within and among species [25]. The extent to which metabolic rate scales with size changes considerably among individuals and throughout ontogeny, and the causes for these changes are unclear [26]. To date, most intraspecific studies have examined ontogenetic scaling and measured how metabolic rate scales with size as animals grow, usually by comparing large and small individuals of different ages or by experimentally manipulating individuals to create size gradients [27–31]. Many of these types of studies have found isometric or near-isometric scaling in the early life history [32,33], especially for pelagic species and life stages [34] but they confound size for age and developmental stage. An alternative and preferable approach to ontogenetic scaling is the examination of static scaling (e.g. [35–37]), where the relationship between metabolic rate and body size is examined for animals at the same age and developmental stage, by comparing individual metabolic rates across a naturally varying size range [38,39]. The general implications of static allometry remain the same for life-history theory; smaller individuals should have greater energy expenditure for a given mass than larger individuals [23].

Despite the likely implications of metabolic scaling for offspring size evolution, we are aware of only one study that has explored the interaction between natural offspring size variation and static metabolic scaling. Kinoshita et al. [40] found an allometric relationship between body mass and metabolic rates of ephyra larvae where mass variation was obtained through measurements of one to multiple individuals per respiration container. Technological innovations now provide higher throughput arrays with more sensitive equipment such that much higher levels of replication using individual offspring as replicates is now possible, and should provide more precise estimates of the relationship between offspring size and metabolic rate. This is the first study to measure static metabolic scaling for individual offspring. Here, we determine the static metabolic scaling exponents across natural variation in offspring size for two marine invertebrates, Bugula neritina and Watersipora subtorquata, repeating this at multiple stages of development until individuals reach the stage of independence (where offspring commence feeding and no longer rely on maternally supplied energy provisioning). Offspring size effects in these species have been well studied; larger offspring produce colonies that have higher survival, growth rates and reproductive output [41,42]. We then estimate the total energy use of maternal energy provisioning for different sizes of offspring in order to determine how energy use to independence scales with offspring size.

2. Material and methods
(a) Experimental overview
To understand how metabolic theory can be used as a potential explanation for the offspring size—fitness relationships central to life-history theory, it is important to understand the extent to which metabolism scales with offspring size. In order to do this, we (i) used measurements of volume and density of individual larvae to obtain estimates of offspring mass (details in electronic supplementary material, M1), (ii) measured the rate of oxygen consumption (V\(_{\text{O}_2}\)) as a proxy for metabolic rate for individual offspring within a naturally occurring size range. We then (iii) calculated the total energy use as a proportion of the supplied energy throughout the dependent phase in order to determine the magnitude to which offspring size dictates energy consumption. Non-feeding offspring, which rely completely on a mother’s allocation of energy supplies (which we assume is proportional to offspring mass), offer us the best study organism to examine the scaling of maternally provisioned energy use in offspring, as sources of external energy supply do not need to be considered. Thus, depending on the environment post-release, non-feeding offspring often reach a stage of independence with significantly depleted energy. Energy use is therefore of key importance to the fitness of both offspring and mother.

(b) Study species, collection and measurement of offspring size
Two marine bryozoans, the arborescent B. neritina and encrusting W. subtorquata, represent two subtidal species abundant in shallow temperate and tropical waters. Colonies brood larvae in either specialized chambers called ovaricles (B. neritina) or on the body wall (W. subtorquata) for approximately one and two weeks, respectively [4,5]. The released, non-feeding larvae are competent to settle and begin metamorphosis immediately but in the field, settlement can be delayed for more than 24 h [43]. We define the dependent phase as commencing with release of larvae, up until the post-settlement period once metamorphosis is complete and the feeding structure (the lophophore) is fully developed. During the dependent phase, offspring are completely reliant on maternally provided energy, although it has been suggested that they may uptake dissolved organic matter (DOM; [44]). However, for B. neritina at least it has been shown that larvae do not use significant amounts of DOM and studies on the effect of extending the larval duration support this [45,46]. The duration of post-settlement metamorphosis is independent of larval size and lasts approximately 2–5 days, depending on temperature (A. K. Pettersen 2014, unpublished data).

Sexually mature colonies of B. neritina and W. subtorquata were collected at Royal Brighton Yacht Club in Victoria, Australia (37°54’18.9″S, 144°58’48.3″E) and Blairgowrie Yacht Squadron, Victoria, Australia (38°21’20.4″S, 144°46’24.8″E), respectively, during January to February 2014. Five colonies were then spawned using standard procedures [41]; following the maintenance of colonies in an aerated seawater system for 2–3 days at 17.5°C, colonies were exposed to bright light to stimulate larval release.
Upon release, larvae were haphazardly sampled for measurement of body area then either introduced directly into individual respiration vials or allowed to settle onto roughened acetate sheets that were cut out and placed into vials. However, for \textit{W. subtorquata} settlers, body area of 24-h-old settlers was used as it has been shown to provide a good predictor of larval size [42]. Body areas of larvae were determined for both larval and settler experiments using standard techniques developed previously [41]. Larvae and settlers were photographed with a Motomic 5 digital camera (Motric, Hong Kong, China) mounted on a dissecting microscope and body area was estimated using image analysis software (IMAGEJ, 1.47v). Larvae were positioned such that the ciliary groove was facing directly upwards, and length of the ciliated groove and the body area were measured to the nearest micrometre. Pilot studies of this method indicated that measurement error in larval size is small; measurement error accounted for 0.8% and 4.4% of all variation in offspring size in \textit{B. neritina} and \textit{W. subtorquata}, respectively, and this low error was also observed in the experimental measurements. In other words, the repeatability of our measures was 99.2% for \textit{B. neritina} and 95.6% for \textit{W. subtorquata}, reflecting an intraclass correlation coefficient of 0.995 and 0.977, respectively, and suggesting that measurement error accounted for very little variation in our estimates of body size. For a detailed account of how offspring mass and energy content were determined, see electronic supplementary material, M1.

(c) Metabolic scaling exponents: fluorescence-based oxygen measurements (\(V_{O2}\)) and conversion to metabolic rate (\(mL h^{-1}\))

The rate of oxygen consumption (\(V_{O2}\)) was measured as a proxy for metabolic rate for larvae and two post-settlement stages of \textit{B. neritina} and \textit{W. subtorquata}. Oxygen consumption was measured using a 24-channel PreSens sensor dish reader (Sensor Dish Reader SDR2, PreSens), with 24-chamber glass micro plate (200 \(\mu\)l) (Loligo Systems Aps, Tjele, Denmark) according to standard techniques [47,48]. Individual larvae or settlers were placed in a glass vial containing 0.2 \(\mu\)m filtered seawater and a non-consumptive \(O_2\) sensor spot and \(V_{O2}\) was calculated from the rate of change of \(O_2\) saturation (\(m_{O2} \text{ h}^{-1}\)) as \(V_{O2} = (m_{O2} - m_{O2}/100) V_{\mu}O_{2}\) (as per [26]), where \(m_{O2}\) is the rate of change of \(O_2\) saturation for blank vials containing no larvae or in the case of settlers, only aceta (\(\% h^{-1}\)), \(\mu O_{2}\) is the oxygen capacitance of air-saturated (AS) seawater at 17.5 \(^\circ\)C (5.8 ml l \(^{-1}\); [49]) and \(V\) is water volume (chambers were 2.0 \(\times 10^{-4}\) l, and water volume was calculated by subtracting the volume of acetate and animals). Four blank vials were recorded simultaneously to account for microbial oxygen consumption, and sensor spots were calibrated with AS seawater (100% AS) and water containing 2% sodium sulfite (0% AS). All \(V_{O2}\) measurements were conducted in a dark, constant-temperature room at 17.5 \(^\circ\)C. For \(V_{O2}\) measurements for larvae, oxygen concentration in the vials was recorded over 30 min (we used a short period to ensure no larvae began settlement while in the chambers). For settlers, oxygen concentration was recorded over 3 h at two different stages of development prior to completing metamorphosis and development of the lophophore (from here on, designated early and late). Pilot studies showed no systematic differences in the duration of metamorphosis associated with offspring size. Hence, \(V_{O2}\) for all metamorphosing individuals was measured at two discrete times; 0 h and 24 h for \textit{B. neritina} and \textit{W. subtorquata} was measured at 0 h and 54 h post-settlement to represent the start and mid-point of the post-settlement-dependent phase. Each experimental run consisted of simultaneous \(V_{O2}\) measurements for 20 individuals recorded at three development stages (larval, early and late stage). To determine the rate of energy expenditure by different sized offspring, \(V_{O2}\) (\(\mu L h^{-1}\)) was converted to metabolic rate (\(mL h^{-1}\)) using the calorific conversion factor of 20.08 \(\mu L O_2\) [50].

All data were analysed in a log–log framework. Due to various logistical limitations (for a detailed description of the analytical approach, see electronic supplementary material, M2), scaling exponents and coefficients for larvae were analysed independently to those of the post-settlement stages (early and late) for both species. A repeated-measures ANCOVA approach was taken for measuring the same individual settlers throughout the early and late stages. As different individuals were measured for the larval stage, a linear mixed-effects ANCOVA was used to determine whether differences existed between larval and settler stage metabolic rates. All analyses included the random effect of Experimental Run and all possible interactions with stage and \(log_{10}\) mass. A standard ANCOVA framework rather than RMA approach was used as the error structure of our data was not suited to RMA (see the electronic supplementary material for details).

(d) Predicting proportional energy use from offspring size

In order to calculate the proportional energy use for offspring of different sizes, we parametrized the power relationship between mass (\(M\)) and metabolic rate (\(MR\), where \(MR = aM^b\)). Using the coefficients (\(a\) and scaling exponents (\(b\)) estimated by our experiments, combined with the approximate length of time spent in each stage, we were able to predict total energy consumption throughout the dependent or non-feeding stage of development.

To determine whether the energy difference between large and small offspring was substantial, such that it may affect settlement success or post-settlement survival, we compared the proportional energy use for offspring at the extremes of our observed size distribution. We calculated energy use by offspring across an approximately threefold difference in size (see electronic supplementary material, SI), which reflects the size range of offspring in natural populations of these species [41,42].

3. Results

(a) Metabolic scaling exponents

Allometric scaling relationships of metabolic rate were observed for both species and across all developmental stages (table 1), where the scaling exponents were significantly different from both 0 and 1 (\(p < 0.05\)). For offspring in both species, there was a significant development-stage effect where overall metabolic rate was highest during the larval phase in \textit{B. neritina} and lowest in the early settler stage (tables 2 and 3). Conversely, metabolic rate overall increased throughout ontogeny in \textit{W. subtorquata} (tables 2 and 3). For \textit{W. subtorquata}, no interaction between stage and mass was detected; therefore, a single scaling exponent was obtained for all three stages. For \textit{B. neritina}, the slopes among the early and late settler stages were found to be significantly different (table 2) and therefore separate scaling exponents were obtained for each stage. For each analysis, there were significant effects of experimental run for the pooled larvae and early-stage settlers of \textit{B. neritina} (table 1) and for late-stage settlers of \textit{B. neritina} (table 2). There was also a significant effect of experimental run for the pooled larvae, early-stage and late-stage settlers of \textit{W. subtorquata} (table 3). We found no support for fitting a random-slopes model (i.e. no significant run \times mass effect was detected), but there was significant among-run variation in the intercept of the relationship between size and metabolic rate (tables 2 and 3). This run-associated
Table 1. Summary of scaling exponents and coefficients (± s.e.) for metabolic rate and mass of the development stages of B. neritina and W. subtorquata, using a log Transformation of linear relationship, where bio metabolic rate

<table>
<thead>
<tr>
<th>Species</th>
<th>Developmental Stage</th>
<th>Coefficient (b)</th>
<th>Scaling Exponent (a)</th>
<th>P-value b < 1</th>
<th>P-value b > 0</th>
<th>R²</th>
<th>P-value b = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. neritina</td>
<td>Larval stage 0.5 h, early stage 24 h, late stage 30 h</td>
<td>1.15 (±0.14)</td>
<td>0.76 (±0.11)</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>0.62</td>
<td>< 0.01</td>
</tr>
<tr>
<td>W. subtorquata</td>
<td>Larval stage 0.5 h, late stage 54 h</td>
<td>2.43 (±0.11)</td>
<td>0.66 (±0.11)</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>0.62</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

variation could stem from multiple sources (phenotypic and genetic differences among colonies, temporal effects). Crucially however, the relationship between mass and metabolic rate was constant among all runs, so our principle findings hold across colonies and times.

4. Discussion

(a) Allometric scaling of metabolism and the benefits of increased offspring size

We found that when offspring depend entirely on maternal resources to complete metamorphosis and burn around 30–50% of their total energy content, larger offspring have much lower relative metabolic rates than their smaller conspecifics. Both B. neritina and W. subtorquata show strong relationships between offspring size and post-metamorphic performance—bigger larvae survive better and reproduce more as colonies [41, 42]. The allometric scaling of metabolic rate with offspring size may explain this relationship. We found that the metabolic dynamics of small and large offspring...
are very different: on an absolute scale, larger offspring use more energy sourced from the mother than smaller offspring; however, on a relative scale (i.e. per unit of body mass), larger offspring use less energy than smaller offspring. In effect, larger offspring are more metabolically efficient during the key phase of dependence on maternal energy, whereas smaller offspring could be regarded as more wasteful. Hence, larger offspring not only reach nutritional independence with absolutely more energy, but also with relatively more energy because, relative to structural components of size, they use fewer resources during the phase in which they depend on maternal resources. Note that this increased efficiency of larger offspring will occur regardless of the initial composition of smaller and larger larvae. For example, different sized larvae could have different proportions of lipid (although this is unlikely given larval sizes were all of similar density in each species), which would affect the final energy content of different sized offspring, but would not alter our finding that larger larvae burn proportionally less of their reserves.

In a previous study, Sinervo [12] alluded to a potential metabolic mechanism for the observed relationship between offspring size and performance in lizards, where ‘juvenile size and growth rate are functionally related because some underlying determinants of growth rate (e.g. metabolism) are allometrically related to size’. Despite this prescient suggestion, there has been little evidence for static (within developmental stage) allometric scaling relationships between naturally occurring offspring size variation and metabolism until now. In contrast, static allometric scaling of metabolic rate has been observed in adult insects (e.g. [35–37]), mammals (e.g. [51,52]) and chickens [53], but the static scaling exponent of metabolic rate is almost isometric in adult pied flycatchers Ficedula hypoleuca [54], and metabolic rate and body mass are independent in some (e.g. [55]), but not all (e.g. [56]), studies of adult Drosophila melanogaster. Thus, although static allometric scaling of metabolic rate is not ubiquitous, it may be widespread within life stages throughout development (e.g. [57,58]), such that it may provide a general explanation for the often-observed positive relationship between offspring size and performance across a wide range of taxa. We believe the metabolic benefits of producing larger offspring offer several exciting new lines of inquiry for understanding variation in offspring size.

Table 2. Repeated-Measures analysis for the longitudinal study between log_{10} metabolic rate and log_{10} offspring mass. Metabolic rate for the same individuals of B. neritina and W. subtorquata was measured at two distinct post-settlement development stages; early and late (d.f. presented as num d.f., den d.f.).

<table>
<thead>
<tr>
<th>species</th>
<th>B. neritina</th>
<th>W. subtorquata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d.f.</td>
<td>mean squares</td>
</tr>
<tr>
<td>between subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log_{10} mass</td>
<td>1184</td>
<td>1.04</td>
</tr>
<tr>
<td>experimental run</td>
<td>1184</td>
<td>0.08</td>
</tr>
<tr>
<td>log_{10} mass × experimental run</td>
<td>1173</td>
<td>0.03</td>
</tr>
<tr>
<td>within subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stage</td>
<td>1184</td>
<td>0.49</td>
</tr>
<tr>
<td>stage × log_{10} mass</td>
<td>1184</td>
<td>0.17</td>
</tr>
<tr>
<td>stage × experimental run</td>
<td>1184</td>
<td>0.01</td>
</tr>
<tr>
<td>stage × log_{10} mass × experimental run</td>
<td>1173</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 3. Linear mixed-effects model for cross-sectional study between log_{10} metabolic rate and log_{10} offspring mass. Metabolic rate was measured for different individuals of B. neritina and W. subtorquata at two development stages; larval and early post-settlement stage.

<table>
<thead>
<tr>
<th>species</th>
<th>B. neritina (larval and early stages)</th>
<th>B. neritina (late stage)</th>
<th>W. subtorquata (larval, early and late stages)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d.f.</td>
<td>χ²</td>
<td>p-value</td>
</tr>
<tr>
<td>log_{10} mass</td>
<td>1</td>
<td>39.21</td>
<td><0.01</td>
</tr>
<tr>
<td>experimental run</td>
<td>1</td>
<td>19.41</td>
<td><0.01</td>
</tr>
<tr>
<td>stage</td>
<td>1</td>
<td>37.07</td>
<td><0.01</td>
</tr>
<tr>
<td>log_{10} mass × experimental run</td>
<td>1</td>
<td>0.21</td>
<td>0.65</td>
</tr>
<tr>
<td>log_{10} mass × stage</td>
<td>1</td>
<td>0.21</td>
<td>0.65</td>
</tr>
<tr>
<td>stage × experimental run</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>log_{10} mass × stage × experimental run</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
(b) Hidden metabolic costs of smaller offspring
Life-history theory has long assumed that the fitness benefits of producing smaller offspring come from smaller offspring being ‘cheaper’ to make, allowing mothers to make many more offspring. While smaller offspring almost certainly require fewer maternal resources to make, our findings show that they use these resources much less efficiently than larger offspring. Per unit of body mass, metamorphosis costs more for smaller offspring than larger offspring. Interestingly, the size–fecundity relationship exacerbates these metabolic costs of producing smaller offspring. To illustrate this, we compare two mothers with equal reproductive investment, but which produce offspring of very different mean size. As shown in figure 2, mothers producing smaller offspring will lose 11 mJ per offspring investment to the metabolic costs of offspring development, while a mother producing larger offspring will lose 19 mJ (figure 2a). Because fecundity is inversely proportional to offspring size, mothers producing smaller offspring will lose 47% of their total investment to metabolic costs of development while mothers producing larger offspring will lose only 22% (figure 2b). While smaller offspring are much cheaper to make initially, they are much more expensive to provision through to nutritional independence—a finding that current life-history theory fails to consider explicitly. For species with post-release care (e.g. mammals and birds), this suggests that any decrease in initial offspring size via egg size or birth weight must be overcompensated for via parentally supplied resources. A simple trade-off between pre- and post-release investment will not yield identical outcomes due to the reduced efficiency of smaller offspring during development. Instead, a small decrease in offspring size must be accompanied by a larger increase in post-release parental investment. For species with no post-release care, the increased inefficiencies of smaller offspring size will simply exacerbate the costs of smaller initial parental investment, extending the phase that smaller offspring need to feed simply to attain equivalent sizes to larger offspring. These subtle costs of producing smaller offspring should be included in future models of offspring size.

(c) Modifiers of the offspring size—energy consumption relationship
Factors that increase the length of the dependent phase should increase the benefits of larger offspring sizes (and also increase the costs of smaller offspring sizes). For example, our results may explain the well-known relationship between temperature and offspring size, whereby mothers often produce larger offspring in cooler temperatures [59]. If temperature affects developmental rates more than metabolic rate, then mothers producing larger offspring at higher temperatures will simply reduce the developmental costs of offspring size. Conversely, in cooler temperatures where development time is increased to a higher extent than metabolic rate is decreased, offspring will require larger energy stores to reach independence [60]. In species with extended periods of time that offspring depend on maternal resources (e.g. altricial species of birds), we would expect the benefits of increased egg size to be enhanced.
and indeed, altricial species do tend to produce larger eggs than precocial species [61]. Similarly, those species with longer incubation periods also have larger egg sizes [62]. In our system, larval period and temperature are key modifiers of the length of the dependent phase. For our study species, the larval phase varies in nature between a few minutes and up to 24 h [43]. A relatively long larval period of 12 h (and the same size-specific metabolic rate) would therefore yield an almost twofold increase in the differential of efficiency between big and small larvae in *B. neritina* and *W. subtorquata* (1.8 and 1.6 times, respectively). Our results may provide an explanation for the finding that larger larvae cope better with prolonged swimming periods in *B. neritina*; Burgess et al. [46] found that extending the larval period reduces post-metamorphic performance, but that smaller larvae showed the greatest reductions in performance relative to larger larvae. Furthermore, larger larvae in both *B. neritina* and *W. subtorquata* tend to reject low-quality settlement sites for longer than smaller larvae, thereby increasing their chances of colonizing higher quality environments [46]. Our results suggest that larger larvae can afford to be more selective of their settlement environment for longer, because the costs of extending the larval period are less for larger larvae relative to smaller larvae. Our results may therefore explain the well-known but poorly understood relationship between offspring size and larval duration in marine invertebrates with non-feeding larvae [63]. If the patterns found here also apply to feeding larvae, the effects of egg size on metabolic efficiency could be even more profound. In such species, whose larval periods can extend for weeks to months depending on food and habitat availability (as reviewed in Strathmann [64]), even slight differences in relative metabolic rates will be magnified over such extended periods of time. An important next step will be to repeat our study in species with feeding larvae.

It is important to note that our results are subject to a number of caveats. First, we assume that carbon content scales isometrically and with the same intercepts across our offspring size range for all of our experimental runs. Any divergence from these assumptions may explain the run effects observed in both species. If carbon content is affected by variables other than offspring size, then this may alter our estimates of energy use. However, our main finding that smaller larvae use relatively less energy is unaffected by whether carbon content is affected by variables other than offspring size, then this may alter our estimates of energy use. However, our main finding that smaller larvae use relatively less energy is unaffected by whether carbon content is consistent across runs. Second, we found allometric relationships between offspring size and metabolic rate for two very different species from the same phylum; however, it is too soon to generalize as to whether our findings hold more broadly. Instead, our proposed mechanism remains an
attractive, but speculative, hypothesis as to why larger offspring perform better than smaller offspring, and more tests of static allometry in metabolic rate across offspring sizes in other taxa are needed.

5. Conclusion

We found that the scaling exponent of metabolic rate was less than 1 throughout the dependent phase in two marine bryozoans, B. neritina and W. subtorquata. We propose that the allometric scaling of metabolic rate during early development has important life-history consequences but, at this stage, must restrict our conclusions to the two species tested. Larger offspring are provisioned with more energy than smaller offspring but, because metabolic rate scales allometrically with offspring size, larger offspring use energy at a relatively lower rate than smaller individuals. Therefore, all else being equal, larger offspring should reach independence with a higher proportion of maternal investment than smaller offspring. Our results may provide a general explanation for why larger offspring do perform better than smaller offspring, given that most animals show allometry with respect to metabolism and that we expect the increased relative efficiencies of larger offspring to be widespread. However, this hypothesis requires further testing. Furthermore, our results show that there are intrinsic benefits to producing larger offspring (i.e. they are more efficient users of maternal resources). Hence, for these species at least, conditions that favour the production of smaller offspring must overcome the intrinsic metabolic benefits of increased size.

Despite the extensive theoretical treatment of offspring size, we are unaware of any contemporary theory that explicitly considers the metabolic benefits of increased offspring size. Development of such theory is an important next step.

Authors’ contributions. A.K.P. carried out the experimental work, data analysis, participated in the design of the study and drafted the manuscript; D.J.M. and C.R.W. conceived the design of the study and helped with analysis and interpretation of data and drafting of the manuscript. All authors contributed substantially to revisions and gave final approval for publication.

Competing interests. The authors have no competing interests.

Funding. This research was supported by an Australian Postgraduate Award (A.K.P.) and grants from the Australian Research Council (D.J.M. and C.R.W.).

Acknowledgements. The authors wish to thank Royal Brighton Yacht Club and Blairgowrie Yacht Squadron for access to field collection sites, and M. Lagos Onostica, H. Cameron and A. Pantorno for field and technical assistance. We thank H. Klug, A. Woods, K. Monro and two anonymous reviewers for comments that greatly improved our manuscript.

References

