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Many populations live in environments subject to frequent biotic and abiotic

changes. Nonetheless, it is interesting to ask whether an evolving popu-

lation’s mean fitness can increase indefinitely, and potentially without any

limit, even in a constant environment. A recent study showed that fitness

trajectories of Escherichia coli populations over 50 000 generations were

better described by a power-law model than by a hyperbolic model. Accord-

ing to the power-law model, the rate of fitness gain declines over time but

fitness has no upper limit, whereas the hyperbolic model implies a hard

limit. Here, we examine whether the previously estimated power-law

model predicts the fitness trajectory for an additional 10 000 generations.

To that end, we conducted more than 1100 new competitive fitness assays.

Consistent with the previous study, the power-law model fits the new

data better than the hyperbolic model. We also analysed the variability in

fitness among populations, finding subtle, but significant, heterogeneity

in mean fitness. Some, but not all, of this variation reflects differences in

mutation rate that evolved over time. Taken together, our results imply

that both adaptation and divergence can continue indefinitely—or at least

for a long time—even in a constant environment.
1. Introduction
In nature, the process of adaptation by natural selection appears inexhaustible

and open-ended in its creativity [1]. Such sustained adaptation is usually thought

to occur in response to changing environmental conditions, including those pro-

duced by the evolution of other organisms with which the focal population

interacts. As a corollary, it is also often presumed that evolving organisms must

eventually ‘run out’ of ways to improve, absent changes in their environment.

In the parlance of adaptive landscapes, a population will, sooner or later, reach

a local fitness peak [2,3].

Wiser et al. [4] challenged the presumption that there must be an upper

bound to organismal fitness. They measured the fitness trajectories over 50 000
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generations for Escherichia coli populations in the long-term

evolution experiment (LTEE). They compared the fit of two

simple models—a hyperbolic model and a power-law

model—that both predict a decelerating fitness trajectory (i.e.

a declining rate of fitness improvement), but only the former

has an upper limit, or asymptote. The power-law model, by

contrast, predicts that the logarithm of fitness will increase

with the logarithm of time, a relationship that has no asymp-

tote. Both models fit the observed fitness trajectories well, but

the power-law model fit much better. Moreover, if truncated

datasets (e.g. from only the first 20 000 generations) were

used to predict the subsequent trajectories, the hyperbolic

model consistently underestimated the extent of future

improvement, whereas the power-law model accurately pre-

dicted the changes seen in later generations. Despite having

no upper limit, but owing to its logarithmic dependence on

time, the power law did not lead to absurd predictions that

would seem to violate physical constraints. Indeed, when the

power-law model was extrapolated millions of generations

into the future, the predicted fitness levels correspond to

growth rates that are within the range that some bacterial

species can achieve under optimal conditions.

In addition, Wiser et al. [4] presented a dynamical model

of fitness evolution for large asexual populations that also

generated a power-law relationship. The dynamical model

included two particularly important phenomena that have

been documented in the LTEE—clonal interference, in

which contemporaneous lineages with different beneficial

mutations compete for fixation [5,6]; and diminishing-

returns epistasis, in which the fitness advantage of beneficial

mutations tends to be smaller on more-fit genetic backgrounds

[7]. That model also predicted that several populations that

evolved hypermutable phenotypes [8] early in the LTEE

would show faster rates of fitness improvement, and this

prediction was confirmed.

Here, we perform competition assays using population

samples from 40 000, 50 000 and 60 000 generations to test

whether the power-law model’s predictions continue to

hold. Because the magnitude of fitness changes are predic-

ted to become increasingly small—and the curvature of the

fitness trajectory increasingly subtle—as time goes by, we

performed more than 1100 competitions to assess the fit of

the model. Our results add support to the hypothesis that

adaptive evolution is unbounded even in a constant environ-

ment. This extensive replication also allowed us to estimate

with some precision the among-population variance com-

ponent for mean fitness (i.e. the variation above the level

attributable to the measurement error in replicate assays).

From previous studies, we know that one of the 12 LTEE

populations followed a different path from the others, when

it evolved the ability to grow on citrate in the medium

(included as a chelating agent), which neither the ancestor

nor any of the other populations can exploit [9,10]. We also

know that the populations that became hypermutable

achieved a boost in their fitness trajectories [4]. Early in the

LTEE, before these exceptional cases had evolved, previous

estimates of the among-population variance indicated

subtle but significant heterogeneity in mean fitness [11].

However, it was not known whether that variation was tran-

sient or would be sustained over the long term. Our results

show that the populations—even those that appear unexcep-

tional in other respects—continue to vary in their mean

fitness levels after many tens of thousands of generations.
2. Material and methods
(a) Strains
The E. coli LTEE is described in detail elsewhere [11,12]. Our

analyses used whole-population samples from nine of the

12 LTEE populations taken at three time points: 40 000, 50 000

and 60 000 generations (electronic supplementary material,

table S1), for a total of 27 samples. We excluded three popu-

lations (Ara22, Ara23 and Araþ6) that no longer make

colonies that can be reliably counted in the standard fitness

assays or that evolved the ability to consume the citrate in the

culture medium, which also precludes using the standard

assays [4]. Of the nine populations used in our study, three

evolved hypermutable phenotypes: Ara21, Ara24 and Araþ3

[8,13]. In addition to the whole-population samples, we used

two clones as common competitors, REL10948 and REL11638

[4]. The former is an Ara– clone isolated from population

Ara25 at 40 000 generations; the latter is a spontaneous Araþ

mutant of that clone (electronic supplementary material, table

S1). The Ara marker serves to distinguish competitors during

fitness assays, as Ara– and Araþ cells make red and white colo-

nies, respectively, on tetrazolium–arabinose (TA) indicator

plates. This marker has been shown to be selectively neutral

under the glucose-limited conditions of the LTEE [14,15].

The use of an evolved strain as a common competitor should

improve the precision of estimates when the fitness differential

between the evolved and ancestral types is large [16]. We also

used the LTEE’s ancestral strain, REL606 [11,17] and three

clones from populations Araþ4 and Araþ5 at 60 000 genera-

tions (electronic supplementary material, table S1) in assays to

estimate mutation rates.
(b) Culture conditions
The culture conditions for the LTEE are described elsewhere

[11,12]. In brief, each population is maintained by transferring

0.1 ml of culture into 9.9 ml of fresh medium every 24 h. The

medium, called DM25, contains 25 mg ml21 glucose, which is

the limiting resource. Cultures are kept at 378C in a shaking incu-

bator for aeration. The 100-fold dilution and regrowth allow

approximately 6.6 generations per day. Every 500 generations

(75 days), samples of each population are stored in 10% glycerol

at 2808C; the bacteria in those samples remain viable and are

available for later study.
(c) Fitness assays
The fitness assays followed the same procedures as used in the

first experiment reported by Wiser et al. [4]. In brief, fitness

was measured in the same environment as used in the LTEE

by competing a population sample against a reference strain,

either REL10948 or REL11638, with the opposite Ara marker

state. Prior to the start of the assay, competitors were removed

from the freezer and separately acclimated to the culture

medium and other conditions described above. The competitors

were then mixed at an equal volumetric ratio, and a sample was

spread on a TA plate to estimate their initial abundances based

on colony counts. The mixed competition cultures were propa-

gated for 3 days by 1 : 100 daily dilutions into fresh medium

and, at the end of the third day, another sample was spread on

a TA plate to estimate the final abundances of the two competi-

tors. From the initial and final counts of each type, and taking

into account the dilution factors, we calculated for each competi-

tor its realized growth rate during the assay. We then calculated

fitness as the ratio of the evolved population’s growth rate to that

of the reference strain. The assays were performed in 42 complete

blocks of 27 assays each. Twenty authors performed one block

each, and one author (M.J.W.) performed 22 blocks.

http://rspb.royalsocietypublishing.org/
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Figure 1. Trajectories of mean fitness for nine E. coli populations from the
LTEE (thin lines) and grand-mean fitness (thick dashed line). Data from the
electronic supplementary material, table S2.
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(d) Missing values and outliers
Eight of the 1134 assays failed to yield fitness estimates owing to

procedural errors. In addition to the missing values, we screened

the remaining estimates for outliers as follows. We first log-

transformed the estimates to make random deviations symmetric

around the mean. We then computed the mean and standard

deviation of the transformed estimates for each of the 27 popu-

lation samples, and we converted each transformed estimate to

a z-score by taking the absolute value of its deviation from the

mean and dividing by the standard deviation. Assuming nor-

mality, one expects approximately 0.3% of the z-scores to be

greater than 3 and only approximately 0.01% to be greater than

4. Thus, one would expect to see among the 1126 estimates

only a few z-scores greater than 3 and none or at most one

above 4. However, 13 z-scores were over 3, including five that

exceeded 4. There were also 44 scores that fell between 2 and 3;

assuming normality, we expect 48 such values, and so there are

not excessive deviations in this range. Based on this analysis, we

eliminated the estimates that produced the 13 most extreme

z-scores from our analyses, leaving a total of 1113 values. The

number of estimates ranged from 39 to 42 for the 27 population

samples (electronic supplementary material, table S2). We also com-

puted quantities that describe changes in fitness over time, which

require estimates from multiple time points. Owing to the missing

values and outliers, and because we calculated these changes

using fitness estimates from the same population and block, we

often had fewer estimates for these quantities. In the Results, we

describe the criteria used for including data in each analysis.

(e) Fluctuation tests
We performed fluctuation tests [18] to compare the mutation

rates of the ancestor and three 60 000-generation clones from

each of two populations, Araþ4 and Araþ5. The bacteria were

revived by inoculating 15 ml of frozen stock into 10 ml of LB

broth, then incubating the cultures overnight at 378C in a shaking

incubator for aeration. Each resulting stationary-phase culture

was then diluted 10 000-fold into 9.9 ml of DM25 and incubated

for 24 h at 378C with aeration. From each DM25 culture, we

transferred 150–600 cells to 24 replicate 600-ml cultures of

DM250 (containing 250 mg ml21 glucose) in 96-well plates,

which were incubated for 24 h at 378C. Samples from six replicate

cultures were then diluted and spread on TA plates to estimate

the average number of cells, and 200-ml aliquots (one-third of

the total volume) from all 24 cultures were spread onto LB

plates supplemented with either 100 mg ml21 rifampicin or

30 mg ml21 nalidixic acid. The antibiotic-containing plates were

incubated at 378C for 48 h, and the number of plates with one

or more resistant colonies was counted. The mutation rate, m,

was estimated using the p0 method [18] as –ln( p0)/N, where p0

is the proportion of replicate cultures without any mutants and

N is the number of cells tested per replicate culture. If none of

the replicates in a test produced any resistant mutant, then the

mutation rate was estimated, by convention, using 0.5 as the

number of positive replicates.

( f ) Statistical analyses
Population and block are random factors in ANOVAs. Statistical

analyses were performed using R v. 3.0.2 [19].
3. Results
(a) Fitness continues to increase
In all nine populations tested, the estimated mean fitness

increased over both the 40 000–50 000- and the 50 000–60 000-

generation intervals (figure 1; electronic supplementary
material, table S2). The probability that all nine populations

would, by chance, yield monotonically increasing point

estimates across three time points is (1/3 � 1/2)9 , 1027.

When each population is analysed individually (table 1),

the cumulative increase between 40 000 and 60 000 gener-

ations is highly significant (all p , 0.001). Six populations

showed significant fitness gains over both component inter-

vals, while three had significant gains in only one interval

(all p , 0.05).

One can apply a table-wide sequential Bonferroni correction

[20,21] to the data in table 1 to account for the facts that (i) we

performed 27 significance tests in total and (ii) the sets of

three tests for each population are not independent. However,

the results hardly change—only three of the 24 tests that were

individually significant at p , 0.05 become non-significant

using this more conservative approach.

(b) Gains more consistent with the power-law model
than with the hyperbolic model

Wiser et al. [4] presented several lines of evidence that fitness

trajectories of the LTEE populations are better described by a

power-law model than by a hyperbolic model. Both models

were fit to trajectories based on competitions between evolved

population samples and their genetically marked ancestors

using data through 50 000 generations. The best fit of the hyper-

bolic model gave w ¼ 1 þ 0.7007 t/(t þ 4431), where w is the

grand-mean fitness relative to the ancestor and t is time in gen-

erations. This equation predicts grand-mean fitness values

relative to the ancestor of 1.6308, 1.6437 and 1.6525 at 40 000,

50 000 and 60 000 generations, respectively. For the power-

law model, the best fit yielded w ¼ (0.00515 t þ 1)0.0950,

which predicts values of 1.6597, 1.6951 and 1.7246 at the

same time points.

In our study, the evolved population samples competed

against a high-fitness strain (a 40 000-generation clone from

one of the LTEE populations), not against their much

less fit ancestor. This high-fitness strain was used so that

the fitness differences between the competitors were much

http://rspb.royalsocietypublishing.org/


Table 1. Changes in mean fitness between 40 000 and 60 000 generations in the LTEE populations. Based on N blocks for which fitness values were obtained
at all three time points. All p-values were calculated using one-tailed t-tests, given the expectation that fitness should increase. All tests are significant ( p ,

0.05) except three that were non-significant based on individual tests (bold) and three others that were non-significant after a table-wide sequential Bonferroni
correction (italics).

generations 40 000 – 60 000 40 000 – 50 000 50 000 – 60 000

population N mean s.d. p-value mean s.d. p-value mean s.d. p-value

Araþ1 39 0.0250 0.0383 0.0001 0.0227 0.0410 0.0007 0.0023 0.0359 0.3436

Araþ2 38 0.0527 0.0416 ,0.0001 0.0192 0.0533 0.0164 0.0335 0.0686 0.0023

Araþ3 38 0.0527 0.0489 ,0.0001 0.0335 0.0391 ,0.0001 0.0192 0.0502 0.0120

Araþ4 41 0.0603 0.0437 ,0.0001 0.0085 0.0342 0.0598 0.0519 0.0468 ,0.0001

Araþ5 40 0.0551 0.0410 ,0.0001 0.0297 0.0329 ,0.0001 0.0254 0.0420 0.0002

Ara21 41 0.0756 0.0641 ,0.0001 0.0464 0.0528 ,0.0001 0.0292 0.0771 0.0099

Ara24 39 0.0472 0.0425 ,0.0001 0.0059 0.0490 0.2289 0.0414 0.0483 ,0.0001

Ara25 40 0.0541 0.0329 ,0.0001 0.0348 0.0272 ,0.0001 0.0193 0.0332 0.0003

Ara26 42 0.0371 0.0267 ,0.0001 0.0165 0.0311 0.0007 0.0205 0.0329 0.0001

Table 2. Comparison between the observed changes in the grand-mean
fitness and those predicted by the hyperbolic and power-law models. Two-
tailed p-values were calculated by comparing the empirical grand mean to
each model’s prediction using a t-test with 8 d.f.

generations
40 000 –
60 000

40 000 –
50 000

50 000 –
60 000

grand mean 0.0511 0.0241 0.0270

standard deviation 0.0142 0.0132 0.0143

hyperbolic model 0.0133 0.0078 0.0054

two-tailed p ,0.0001 0.0060 0.0019

power-law model 0.0391 0.0213 0.0174

two-tailed p 0.0350 0.5428 0.0804
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smaller, which allowed the competitions to run for 3 days

and, in turn, provided more precise estimates of small differ-

ences in relative fitness. Therefore, to compare the fitness

gains estimated in our study with the predictions of the

models from Wiser et al. [4], we needed to analyse the

changes in fitness, rather than fitness itself. The hyperbolic

model predicts a proportional fitness increase of 0.79%

(i.e. 1.6437/1.6308–1) from 40 000 to 50 000 generations,

and it predicts an increase of 0.54% from 50 000 to 60 000

generations; the predicted increase over the two intervals

combined is 1.33%. The power-law model predicts increases

of 2.13 and 1.74% over the same two intervals, with a

cumulative gain of 3.91%.

We can test the actual fitness gains against these two sets of

predictions using the means for the nine populations (table 2),

where the independently evolving populations serve as the

appropriate unit of replication in the comparisons. The

observed fitness gains significantly exceed the gains predicted

by the hyperbolic model over all three intervals (all p , 0.01).

This outcome agrees with the pattern reported by Wiser et al.
[4] when they truncated their 50 000-generation dataset and
used shorter-duration subsets to predict the future trajectory

of mean fitness—namely, the hyperbolic model consistently

underestimated the potential for future gains. The observed

gains are much closer to those predicted by the power-law

model, although the difference between the model and

observations was marginally significant ( p ¼ 0.035) over

the entire 40 000–60 000-generation interval (table 2). The

observed improvement during that time was 5.1%, whereas

the power-law model predicted a gain of 3.9%.

The power-law model has no asymptote (unlike the

hyperbolic model), but it does predict that the rate of fitness

increase will decline over time. Indeed, a decelerating fitness

trajectory was clearly evident over the full 50 000 generations

analysed by Wiser et al. [4]. However, the deceleration

becomes less apparent as time goes on because the fitness

gains become smaller, making it difficult to tell whether the

changes between two successive intervals differ from one

another. Using the same fitness gains predicted by the

power-law model as before, we can express the predicted

deceleration as the difference in gains between 40 000 and

50 000 generations and between 50 000 and 60 000 gener-

ations, which equals 0.39%. Averaged across the nine

populations, the observed deceleration was –0.29% (i.e.

there was a slight acceleration), but this deviation from the

power-law model prediction is not significant given the

variability among populations (two-tailed p ¼ 0.4175). In

addition to the small size of the fitness gains over these

two periods, the absence of any observable deceleration

may reflect limited statistical power given the small number

of populations and the resulting noise associated with the

stochastic occurrence of beneficial mutations.
(c) Data consistent with assumption of transitive fitness
Wiser et al. [4] competed the evolved populations against

their common ancestor, whereas we competed them against

a clone isolated from one of the evolving populations in

order to reduce the fitness differences and thereby obtain

more precise estimates. Thus, an implicit assumption of our

analyses is that fitness is transitive (i.e. one can predict the

http://rspb.royalsocietypublishing.org/


Table 3. Among-population variance component for fitness (Vpop) and corresponding standard deviation (spop).

generation 40 000 50 000 60 000

Vpop spop Vpop spop Vpop spop

all nine populations 0.001956 0.0442 0.002005 0.0448 0.002614 0.0511

excluding hypermutators 0.000868 0.0295 0.000694 0.0263 0.001457 0.0382

also excluding Araþ1 0.000342 0.0185 0.000210 0.0145 0.000182 0.0135
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fitness of C relative to A based on the fitness of C relative to B

and of B relative to A). It is certainly possible that this

assumption is not true in the LTEE. However, de Visser &

Lenski [22] performed hundreds of competitions using 21

samples from one LTEE population, and they found no

significant deviations from transitivity.

Using the data from Wiser et al. [4] and our study, we

examined whether transitivity spans the two studies and

the different competitors they used. Wiser et al. measured fit-

ness values at 41 time points for each population relative to

the ancestor; from those data they fit the power-law model

separately to each population (table S4 in their supplement).

From their fitted models, we can calculate the predicted

fitness relative to the ancestor for each population at gener-

ation 60 000. We then assume transitivity and divide each

population’s predicted fitness at generation 60 000 by that

predicted for population Ara–5 at generation 40 000 (i.e. the

source of the common competitor used in our study). This

approach allows us to compare the predicted, rescaled

values for the nine populations with their mean fitness

values measured here at 60 000 generations based on compe-

titions against the 40 000-generation clone. The observed and

predicted fitness values were both measured with error (i.e.

neither is a precisely known variable); therefore, a correlation

analysis is appropriate but a standard regression is not [22].

The correlation analysis indicates a highly significant positive

relationship (r ¼ 0.822, 7 d.f., one-tailed p ¼ 0.0033) between

the observed and predicted fitness values at 60 000 gener-

ations. In principle, it is possible to obtain a significant

correlation, but with the observed values systematically

greater or less than the predicted values. That was not the

case, however, as the observed fitness values exceeded the

population-specific predictions in four cases, with five cases

in the other direction. On balance, then, the two datasets

are consistent with the assumption of transitivity.
(d) Heterogeneity among populations in fitness
We can use the replicate assays for each population in ana-

lyses of variance to evaluate whether the fitness differences

among the populations are significant, and to estimate the

among-population variance component [23]. For each gener-

ation tested, we ran a two-way ANOVA with population and

block as random factors (electronic supplementary material,

tables S3–S5). We excluded blocks with missing values in

order to fulfil a complete-block design. At all three gener-

ations, there was highly significant variation in mean fitness

among the populations (all p , 0.0001). We found equally

strong support for that variation using the rank-based,

non-parametric Friedman’s method [23].
The among-population variance component, Vpop, reflects

the heterogeneity in mean fitness among populations that is

above and beyond the variability caused by measurement

noise (including block effects). We took the square root of

the variance component to generate a corresponding stan-

dard deviation, spop, that is commensurate in scale to

fitness (table 3). At all three time points, spop was between

about 4.5 and 5%, so that a typical pair of populations differs

in mean fitness by several per cent.

One source of among-population variability is that three of

the nine populations in our study had evolved hypermutabil-

ity, such that their point-mutation rates increased by roughly

100-fold [8,13]. Both theory and prior empirical evidence indi-

cate that these hypermutable populations should increase in

fitness somewhat faster than populations with the ancestral

mutation rate, at least so long as there remain some point

mutations that confer fitness benefits substantially above the

increased load of deleterious mutations suffered by the

hypermutators [4,12,13,24]. Indeed, we see that all three

hypermutator populations—Araþ3, Ara–1 and Ara–4—

have higher mean fitness than any of the other six populations

at all three time points tested here (electronic supplemen-

tary material, table S2). The probability of this outcome

occurring by chance alone, at any given time point, is (3/9 �
2/8 � 1/7) ¼ 0.0119. (Owing to temporal autocorrelation,

such that high and low fitness populations tend to retain

their relative ranks, it is inappropriate to combine probabilities

across time points.) Even if we drop the hypermutator popu-

lations, the among-population variance component for fitness

remains highly significant (all p , 0.0001) at all three gener-

ations (electronic supplementary material, tables S3–S5).

However, the corresponding standard deviation, spop, declines

to between 2.5 and 4% (table 3).

Another population, Araþ1, also stands out as unusual in

two respects. First, it experienced many insertions and other

non-point mutations caused by increased activity of the IS150
mobile element [25,26]. Second, the fitness trajectory for

Araþ1 was notably lower than that of any other population

[4]. Indeed, in our data, the mean fitness of Araþ1 was at

least 4% lower than any other population at all three time

points tested (electronic supplementary material, table S2).

If the unusual activity of IS150 in this population is causally

related to its lower fitness gains—and that connection has not

been proven—then it would imply that some of the IS150-

mediated mutations moved this population into a relatively

unproductive region of genotypic space, one with fewer or

smaller opportunities for continued adaptation. In any case,

we can remove Araþ1 from our analysis, along with the

three hypermutators, and test whether the five remaining—

and seemingly normal—populations vary in their fitness

http://rspb.royalsocietypublishing.org/
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levels. In fact, we still see highly significant variation (all p ,

0.0001) at all three time points (electronic supplementary

material, tables S3–S5), although the standard deviation for

fitness declines further to between 1 and 2% (table 3).

(e) Heterogeneity among populations in rates of fitness
gain and deceleration

We also performed analyses of variance to assess whether the

rates of fitness increase from generations 40 000 to 60 000 were

homogeneous or heterogeneous across the populations, and

whether the extent of deceleration over the second half of

that interval relative to the first varied among the populations.

These analyses required blocks with no missing values or out-

liers for any of the 27 samples (i.e. nine populations at three

time points), because they involve calculations across the gen-

erations as well as comparisons among the populations.

Twenty-nine of the 42 total blocks qualified.

There is highly significant variability among the popu-

lations in the extent of their improvement between 40 000 and

60 000 generations (electronic supplementary material, table

S6). The corresponding spop is about 1.5%. In other words, a

typical pair of populations differs in their fitness gains over

this period by 1 or 2%. These results are essentially unchanged

whether we include or exclude the populations that became

hypermutable (electronic supplementary material, table S6),

and the variation remains significant using Friedman’s non-

parametric method. One might expect a negative correlation

between the extent of the fitness gain and the initial fitness at

the start of this interval, which would be consistent with the ten-

dency for diminishing-returns epistasis in the LTEE [7] and

many other evolution experiments [27–32]. However, using

the data from table 1 and electronic supplementary material,

table S2, we find that the correlation runs in the opposite direc-

tion (r ¼ 0.3921), owing largely to the fact that population

Araþ1 had both the lowest fitness at 40 000 generations and

the smallest gain between 40 000 and 60 000 generations. This

association provides further evidence that Araþ1 has moved

into a region of genotypic space with less potential for sustained

adaptation. If we exclude this population, the correlation

becomes negative, as expected, although it is not significant

(r ¼ –0.0623, 6 d.f., one-tailed p ¼ 0.4417).

We also find significant variation among populations in

the extent to which their fitness trajectories decelerated or

accelerated (i.e. w50k/w40k – w60k/w50k) in the two successive

10 000-generation intervals (electronic supplementary

material, table S7). This variability in the curvature of the tra-

jectories is again significant whether or not the hypermutable

populations are included, and it remains significant using

Friedman’s rank-based method.

We considered the possibility that a population that was not

a hypermutator at 50 000 generations might have evolved

hypermutability between 50 000 and 60 000 generations. In

particular, population Araþ4 had the largest fitness gain of

any population between 50 000 and 60 000 generations, and

it also showed the most acceleration over that period compa-

red to the prior 10 000 generations (table 1). We performed

fluctuation tests [18] using clones from Araþ4 at 60 000 gener-

ations to assess whether their mutation rate was elevated,

using the LTEE ancestral strain and clones from a more typical

population, Araþ5, as comparisons. These tests show no

indication of an elevated mutation rate in Araþ4 (electronic

supplementary material, table S8), whereas the populations that
previously evolved hypermutability showed approximately

100-fold increases in their mutation rates [8,13].
4. Discussion
Many natural populations live in environments that change

often as the result of coevolving species, abiotic perturbations

or both. This environmental variability may prevent natural

populations from reaching their adaptive limits. However, it

is also worthwhile examining whether a population’s mean fit-

ness can increase indefinitely, and potentially without limit, in

a constant environment. Doing so may provide new insights

into the limits of adaptation by natural selection. Also, while

an organism’s overall fitness may be subject to changing

environments, it is possible that some aspects of its perform-

ance—such as core metabolic processes—might experience

constant pressures that would favour little improvements

even after eons of selection.

The bacteria in the LTEE live and evolve in a deliberately

simple and uniform environment. Except for the daily fluctu-

ations produced by the transfers, the exogenous environment

is kept as constant as feasible by using a chemically defined

medium and simple protocols. The limiting resource, glucose,

is provided at a low concentration by laboratory standards,

resulting in cell densities and levels of secreted metabolites

that are likewise low, thereby reducing, but not eliminating,

opportunities for complex frequency-dependent interactions.

Although some frequency-dependent interactions have

evolved in the LTEE, including a transiently stable polymorph-

ism recently discovered in one of the populations used in our

study [6], there is no reason to expect that such interactions

should lead to systematic increases in fitness relative to a dis-

tant ancestor or other reference competitor. That is, any

context-specific interactions should favour mutations that are

beneficial relative to an organism’s immediate competitors

and predecessors. By contrast, fitness gains relative to a distant

ancestor or other reference competitor indicate improvements

in the shared, constant aspects of the environment.

Wiser et al. [4] found that a simple, two-parameter power-

law model—where the rate of improvement declines over

time, but fitness has no upper bound—provided an excellent

description of the grand-mean fitness trajectory in the LTEE

over 50 000 generations. They also showed that if the dataset

was truncated, the power-law model still predicted the future

trajectory with impressive accuracy. In this study, we extended

the duration of that prior study by ‘only’ 10 000 generations (i.e.

20%). However, the changes in fitness are much smaller, and the

curvature in the fitness trajectory is much more subtle, over this

period than during the experiment as a whole. Therefore, to

ensure that our study had the power to detect the predic-

ted changes, we obtained about 40 fitness estimates for each

population at each of 40 000, 50 000 and 60 000 generations.

Our data and analyses provide strong, albeit imperfect,

support for the power-law model. The mean fitness of

the populations, individually and collectively, continued

to improve significantly even over these later generations

(figure 1 and table 1). The average increase in relative fitness

was reasonably consistent with the predictions of the power-

law model based entirely on the previous data, although

the difference between the 5.1% increase we observed and

the predicted gain of 3.9% was marginally significant

(table 2). In any case, the fit of the power-law model was
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much better than that of the hyperbolic model, which predicted

only a 1.3% increase in fitness (table 2). The experimental data

also showed no clear decline in the rate of fitness increase

from 50 000 to 60 000 generations relative to that from 40 000

to 50 000 generations; however, the predicted difference

between these periods is small, and the observed and predicted

values do not differ significantly. In any case, if an alternative

to the power-law model were to be sought based on our data, it

would have even less tendency towards deceleration, not

more—in other words, our new data, like the data analysed

by Wiser et al. [4], do not support a model in which fitness

has an upper bound.

The extensive replication in our study also enabled us to

quantify the divergence of the evolving populations’ fitness

trajectories. The among-population variation in mean fitness

provides information on the structure of the fitness landscape

that the grand-mean fitness trajectory cannot [11,33,34]. In

particular, this variability sheds light on the form of epistasis,

which is a key feature of the dynamic model developed by

Wiser et al. [4] which gives rise to the power-law relationship.

In some respects, it was already known that the fitness trajec-

tories are not strictly parallel. First, one population evolved

the ability to grow on citrate [9,10], a resource in the

medium of the LTEE that remains unavailable to the other

populations. This population was excluded from our analysis

(and, after the function evolved, from Wiser et al. [4]) because

the strong density- and frequency-dependent effects of

that phenotype make the assays used to measure fitness inap-

propriate. (Two other populations were excluded from both

studies because, in later generations, they do not make colo-

nies on the plates used to enumerate competitors in the

fitness assays.) Second, Wiser et al. [4] showed that hyper-

mutable populations had faster-rising fitness trajectories

than the other populations. However, they did not examine

whether there was variation in fitness among the populations

that retained the low ancestral mutation rate throughout

the LTEE. Third, there was significant among-population fit-

ness variation in the early generations of the LTEE [11,35];

however, it was not known whether it would persist or, alter-

natively, diminish if the populations converged on the same

fitness level over time.

In this study, we found significant among-population

variation in fitness at all three late-generation time points

tested (electronic supplementary material, tables S3–S5).

Moreover, this variation was significant even if those popu-

lations that became hypermutable were excluded from the

analysis. The square root of the among-population variance

component (i.e. comparable to a standard deviation) over

the period from 40 000 to 60 000 generations was about 5%

for all of the populations in our analysis and about 3% with-

out the hypermutable populations (table 3). Population

Araþ1 was a notable outlier among the non-hypermutable

populations, having the lowest fitness of all populations at

each generation we tested; this population also had the

lowest trajectory in the study by Wiser et al. [4].

Given the empirical and theoretical support for pervasive

diminishing-returns epistasis in the LTEE [4,7], one would

expect the Araþ1 population to show a propensity to improve

faster than the other non-hypermutable populations. That is, its

low fitness implies greater scope for improvement under the

assumption that all populations are subject to the same form

and strength of diminishing-returns epistasis. In fact, however,

Araþ1 had the least improvement from 40 000 to 60 000
generations of any population—in other words, the opposite

of that expectation. This result implies that this population

has, in some sense, gotten stuck in a genotypic region of the fit-

ness landscape that constrains its evolvability. It follows that

the coefficient that describes the strength of diminishing-

returns epistasis is not a constant—even in the constant

environment of the LTEE—but instead it must vary between

local neighbourhoods in genotypic space.

Besides its unique fitness trajectory, population Araþ1 also

had an unusually high number of mutations caused by the

IS150 mobile element [25,26]. In some respects, that would

seem to make Araþ1 similar to the populations that became

hypermutable and that had the fastest rates of fitness improve-

ment. Indeed, some genes that acquired mutations caused by IS

elements in one population accumulated point mutations in

other populations, implying that knockout or knockdown

mutations in those genes were beneficial [36,37], which has

been confirmed in some cases [38]. However, insertions are

typically more disruptive of gene functions than are point

mutations. Therefore, a population that evolves insertion-

mediated hypermutability may have fewer opportunities

for subtle refinements that could compensate for earlier

mutations that, while beneficial, overshot some optimum

effect. We emphasize this connection between IS-mediated

hypermutability and reduced evolvability is, at present,

merely conjecture. However, we think it is a hypothesis

worthy of further exploration and testing.

How rugged is the fitness landscape on which the LTEE

populations are evolving? De Visser & Krug [39] present

several metrics that describe the ruggedness of fitness land-

scapes based on the individual and combined effects of

mutations found in evolved genotypes. Using data from the

first five mutations to fix in one population [7], the LTEE

landscape appears smooth when compared to other studies

in which mutations were combined and their fitness effects

quantified. Smoother landscapes presumably tend to pro-

mote more repeatable adaptive trajectories and, indeed,

many studies have identified parallel phenotypic and genetic

changes in the LTEE [35,37,38,40–42]. Nonetheless, there are

many examples of divergence as well. Some of these seem

minor, such as the fact that very few mutations are identical

at the sequence level, even when the same gene has beneficial

mutations in most or all of the LTEE populations [37]. Other

cases of divergence have more obvious and important conse-

quences, such as the evolution of hypermutability in some

populations [4,8]. The most striking case of divergence in

the LTEE is the new ability to grow on the citrate that is pre-

sent in the medium, which evolved in only one population

[9,10]. In this study, we demonstrated additional divergences

impacting the fitness trajectories of the seemingly ordinary

populations that did not become hypermutable or evolve the

ability to consume citrate. We showed that population Araþ1

is peculiar in having both the lowest and shallowest fitness tra-

jectory. Even among the other non-hypermutable populations

there is significant variation in their fitness levels. Hence, subtle

divergences are ubiquitous even in the most ordinary popu-

lations. In closing, both adaptation and divergence are

continuing unabated in the LTEE, even after many tens of

thousands of generations in a constant environment.
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