Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals

C. Maier¹,²,* P. Watremez³, M. Taviani⁴,⁵ M. G. Weinbauer¹,² and J. P. Gattuso¹,²

¹Department of Microbiology and Biogeochemistry, CNRS-INSU, Laboratoire d’Océanographie de Villefranche, BP 28, 06234 Villefranche-sur-Mer Cedex, France
²Université Pierre et Marie Curie-Paris 6, Observatoire Océanologique de Villefranche, 06230 Villefranche-sur-Mer, France
³Agence des aires marines protégées, 16 quai de la Douane, 29229 Brest, France
⁴Istars-CNRS, via Gobetti 101, 40129 Bologna, Italy
⁵Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA

Global environmental changes, including ocean acidification, have been identified as a major threat to scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-water corals (CWCs) are thought to be strongly affected by changes in ocean acidification owing to their distribution in deep and/or cold waters, which naturally exhibit a CaCO₃ saturation state lower than in shallow/warm waters. Calcification was measured in three species of Mediterranean cold-water scleractinian corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) on-board research vessels and soon after collection. Incubations were performed in ambient sea water. The species M. oculata was additionally incubated in sea water reduced or enriched in CO₂. At ambient conditions, calcification rates ranged between −0.01 and 0.23% d⁻¹. Calcification rates of M. oculata under variable partial pressure of CO₂ (pCO₂) were the same for ambient and elevated pCO₂ (404 and 867 µatm) with 0.06 ± 0.06% d⁻¹, while calcification was 0.12 ± 0.06% d⁻¹ when pCO₂ was reduced to its pre-industrial level (285 µatm). This suggests that present-day CWC calcification in the Mediterranean Sea has already drastically declined (by 50%) as a consequence of anthropogenic-induced ocean acidification.

Keywords: cold-water coral; Lophelia pertusa; Madrepora oculata; Desmophyllum dianthus; calcification; ocean acidification

1. INTRODUCTION

Cold-water corals (CWCs) have recently come into the focus of research as biodiversity hotspots in the deep oceans [1]. Although, they have been described since the early eighteenth century, their more comprehensive study has been, and still is, restricted by the fact that they predominantly occur in deep depths or on steep cliffs, canyon walls or under overhangs. Technological developments with respect to shipboard logistics, as well as acoustic and video survey techniques, has led to the discovery of a large number of CWC sites during the last decades [2–9].

CWCs are ecosystem engineers which need to outgrow sedimentation and other destructive forces in order to maintain a three-dimensional structure that serves as the foundation for the ecosystem. Skeletal extension rates between 0.02 and 0.07% d⁻¹ for Lophelia pertusa were derived from indirect measurements of stable isotopes [10–13] and from corals growing on artificial substrate [14,15]. For corals maintained in aquaria, skeletal extension rates were 9.4 mm yr⁻¹ and 15–17 mm yr⁻¹ for L. pertusa from Norwegian fjords and the Mediterranean Sea, respectively [16,17], and 3–18 mm yr⁻¹ for Madrepora oculata from the Mediterranean Sea [17]. One study reported average extension rates of 3.77 mm yr⁻¹ and 2.44 mm yr⁻¹ for branches of L. pertusa stained with Alizarin Red S and re-deployed in situ at coral and non-coral areas, respectively [18]. Studies of CWC growth usually refer to linear or radial extension which, without information on skeletal density, provides no information on calcification rates (mass of CaCO₃ precipitated per unit time) [19]. So far, only two studies have reported rates of calcification in CWCs. Average calcification rates measured with the buoyant weighing technique ranged between 0.02 and 0.11% d⁻¹ in four Mediterranean species [20]. Maier et al. [21] reported average rates of 0.02–0.07% d⁻¹ obtained through labelling of colonies of L. pertusa with the radiotracer ⁴⁵Ca.

It is well known that the distribution of CWCs is limited by temperature rather than depth and they are most commonly distributed at temperatures between 4°C and 12°C [1]. In the Mediterranean Sea, they occur at temperatures between 12.5°C to almost 14°C, which might already be at the higher tolerance limit [2]. Furthermore, the uptake of anthropogenic CO₂ by the ocean generates...
ocean acidification which has recently been proclaimed as one of the perhaps most harmful threats to CWCs [1]. That is because CWCs are mostly distributed at relatively high latitudes and/or deep water. Both environments will be the first to be affected by the lowering in ocean pH and a shallowing of the aragonite saturation (fA) horizon [22–24]. The Mediterranean Sea with its two Western and Eastern main basins, separated by the Straits of Sicily, and some smaller regional basins, can be regarded as a miniature ocean that is expected to react faster to global change than the open ocean [25]. Over the last decades, there appears to have been a warming trend attributed to global warming in deep [26] and surface waters [27,28]. A very recent study has shown that there is a high imprint of anthropogenic CO2, which has already affected Mediterranean pH by a decrease of 0.05–0.14 pH units since pre-industrial times [29]. Owing to the high alkalinity in the Mediterranean, more atmospheric CO2 is absorbed than in the open ocean [30]. It is consequently important to understand how anthropogenic partial pressure of CO2 (pCO2) has already affected and how it will affect Mediterranean Sea ecosystems and its key taxa.

Because of their restricted accessibility, it is a demanding task to study the biology and physiology of CWCs, making it important to develop reproducible methods for experimentation. One option is to maintain corals under controlled laboratory conditions, and attempt to mimic their natural environment. However, the maintenance of CWCs in the laboratory is very time consuming and prone to technical problems. We therefore conducted on-board experiments with freshly collected CWCs and ambient sea water. The aim of the study was to compare rates of calcification in three Mediterranean species at three study sites and to test the effects of ocean acidification on M. oculata calcification rates by subjecting colonies to three pCO2 levels: 280 μatm (pre-industrial), 400 μatm (present-day) and 800 μatm (as projected for the end of this century).

2. MATERIAL AND METHODS

(a) Study sites and sampling

CWCs and ambient sea water were sampled during several cruises: June 2009 in the canyon of Lacaze-Duthiers (42°32.98’ N; 03°25.21’ E), in September 2009 in the Gulf of Cassidaigne (43°06.76’ N; 05°27.71’ N), both on board the R/V Minibex (COMEX, France), and in December 2009 in the Strait of Sicily at a site southwest off the island of Malta (35°49.77’ N; 14°04.90’ E) on board the R/V Urania (Italy; figure 1).

During the Minibex cruises, CWCs were sampled with a remotely operated vehicle (ROV), while during the R/V Urania cruise a mini-dredge had to be deployed for a hit-and-go sampling because of technical problems with the ROV. At all sites, sea water next to living CWC was sampled using 6 or 10 l Niskin bottles. After collection, corals were directly transferred to a plastic container (1040 × 640 × 515 mm), containing about 1201 of sea water, which was continuously flowing through two layers of micron bags (5 and 1 μm) and a chilling unit at a rate of 1000 l h⁻¹. Temperature was maintained at 12.5 ± 0.5°C (figure 2). Sea water was sub-sampled to determine the concentration of inorganic nutrients (phosphate and ammonium), total alkalinity (AT) and dissolved inorganic carbon (DIC). Another
part of the sea water collected from CWC sites was used for on-board incubation to determine calcification rates of corals by the alkalinity anomaly technique.

**b) On-board incubation to determine calcification rates of CWCs in ambient sea water**

Small fragments were broken off from CWCs placed in either open or closed vials containing 150 ml or 180 ml sea water, respectively, and directly incubated after fragmentation (table 2 and figure 2). Sea water for incubation was sampled close to CWC sites to provide similar conditions with respect to the carbonate chemistry and nutrients. Open vials contained a small tube (Ø 1 cm) in which the outlet of a thin air tubing (Ø 3 mm) ended (figure 2h,c) to aerate the sea water with ambient air and to equilibrate the pCO2 during incubation. In the open system set-up, the vials were aerated with ambient air, which served two purposes: (i) to keep pCO2 stable and (ii) generate an air lift and thus a vertical flow and mixing of the incubation water. For closed incubation, vials were filled almost to the rim (180 ml) with sea water, and closed with a screw-on lid after corals were placed inside. Closed vials had a couple of millilitre of air space to avoid large changes in dissolved oxygen and to allow for some water mixing via ship movement. As controls, at least three vials contained no corals (blank) and also sea water was sub-sampled prior to starting incubation (T0) to determine initial carbonate chemistry and inorganic nutrient concentration. Corals were incubated for 24 h, and then sea water was sub-sampled for determination of inorganic nutrients, C\textsubscript{T} and A\textsubscript{T}.

**c) Repeated incubation of CWCs under variable pCO2**

First, seven fragments were used in open system incubation and eight in closed system incubation to assess calcification rates using ambient sea water and thus ambient pCO2 (table 2, CSS5_500) directly on board. This on-board incubation served as a control to assess if calcification rates change over time (in a couple of days) and as a function of handling and transport. The same 15 coral fragments (seven open and eight closed system) were then used for repeated incubation at variable pCO2 using the closed system set-up for all 15 coral fragments. About 2 h after transport back to the laboratory the first incubation was carried out at elevated pCO2 (ca 867 μatm), then at ambient pCO2 (404 μatm) and reduced pCO2 (285 μatm) for 24 h each without feeding the corals. The timespan between the first on-board incubation and the last incubation at reduced pCO2 was 5 days. Over this time period, we can also exclude that starvation affects calcification rates of CWCs [31]. For each treatment, at least three additional controls containing only sea water at respective pCO2 (blank) were incubated along with coral samples. Except for ambient pCO2, the pCO2 level of bulk sea water was regulated before incubation using mass flow controllers (AnalytMTC, GFC 171) using a mix of CO2-free air and pure CO2. CO2-free air was produced by stripping CO2 from ambient using soda lime. pCO2 was measured using an infrared gas analyser (LI-COR 6262).

**d) Analyses of inorganic nutrients**

Approximately 30 ml of sea water from Niskin bottles or experimental incubation vials were sub-sampled for inorganic nutrient analysis. Most of the sea water was used for rinsing syringe, filter and vials before a final volume of ca 5 ml of sea water was filtered over a 0.2 μm Acrodisc into 6 ml Pony Vials (Perkin Elmer). The samples were frozen and stored at −20°C pending analysis at the Royal Netherlands Institute for Sea Research. Ammonium and dissolved inorganic phosphorus concentrations were determined using an AxFlow Bran & Luebbe Tracsr800 autoanalyzer [32]. Precision (± 1 s.d.) of an internal standard was 0.009 μmol kg\(^{-1}\) and 0.023 μmol kg\(^{-1}\) for phosphate and ammonium (n = 17 each), respectively.

**e) Analysis of A\textsubscript{T} and C\textsubscript{T} and determination of sea water carbonate chemistry**

Ambient sea water was sampled to analyse the dissolved inorganic carbon (C\textsubscript{T}) and total alkalinity (A\textsubscript{T}) and to calculate other parameters of the carbonate system. Triplicate 500 ml samples were collected from a Niskin bottle. Sea water was poisoned with 100 μl saturated mercuric chloride, the stoppers of the bottles was greased (Apiezon) to seal bottles air-tight, and samples were stored at 10°C pending analysis. Analyses of C\textsubscript{T} and A\textsubscript{T} were performed by the Service National d’Analyse des Paramètres Océaniques du CO\textsubscript{2} (http://soon.ipsl.jussieu.fr/SNAPOCO2/) following the method of Edmond [33] and the software described by DOE [34]. Reproducibility of the Dickson standard (batch 99, http://www.andrew.uc.edu/co2e/batches.html) was 3 μmol kg\(^{-1}\) for A\textsubscript{T} and 2.8 μmol kg\(^{-1}\) for C\textsubscript{T}.

Initial and final C\textsubscript{T} and A\textsubscript{T} of the incubations were measured on 125 ml samples at the Laboratoire d’Océanographie de Villefranche. They were processed and stored as described earlier for the in situ samples. Bottles were carefully filled as described for samples from Niskin bottles, poisoned with 25 μl mercuric chloride, sealed air-tight and stored at 10°C.

C\textsubscript{T} was determined immediately after opening the bottle using an inorganic carbon analyser (AIRICA, Marianda, Kiel, Germany) coupled to an infrared gas analyser (LI-COR 6262). This system was calibrated prior to sample analysis against a certified standard [34].

The sample bottle was kept in a water bath at a constant temperature (25°C). The coefficient of variation of at least three replicate measurements was 0.08 per cent and 2 μmol kg\(^{-1}\). Also, an internal laboratory standard was measured at regular intervals and revealed a precision of ±2.54 μmol kg\(^{-1}\) (mean = 2281.87, n = 17).

A\textsubscript{T} was determined on samples filtered on 0.2 μm membranes by a potentiometric titration (Metrhom Titirando 80 titrator) coupled to a glass electrode (Metrohm, electrode plus) and thermometer. The pH electrode was calibrated on the total scale using Tris/HCl and 2-aminopyridine/HCl buffer solutions with a salinity of 38 (Dickson and co-workers [35]). Measurements were carried out in triplicate at 25°C with pre-weighed samples of ca 25 g and 0.1 N HCl (TitriPAC, Merck) was used for titration. A\textsubscript{T} was calculated as described by Dickson and co-workers [35]. Standards provided by Dickson (batch 99 and 102) were run regularly. Accuracy was on average 2.38 μmol kg\(^{-1}\) and 0.94 μmol kg\(^{-1}\) below the nominal values of batches 99 and 102, respectively. Precision (±1 s.d.) of repeated measurements was 3.53 and 4.63 μmol kg\(^{-1}\) for the same batches (n = 34 and n = 70). Other parameters (pCO2, Õ, pH) of the carbonate chemistry were determined from C\textsubscript{T}, A\textsubscript{T}, temperature, depth, and salinity using the software package SEACARB [36].

**f) Determination of calcification rates (G) by the alkalinity anomaly technique**

The alkalinity anomaly technique was used to estimate rates of calcification using the 2:1 stoichiometric relationship between...
Statistical analyses were conducted using the software package R, under the program R. For the stations of Lacaze-Duthiers (LD_9, LD_10) and the Gulf of Cassidaigne (CS_5) salinity and temperature were 38°C, and 13°C, and at the site south of Malta (MC_30) they were 38.75°C, and 12.75°C, respectively.

Table 1. In situ sea water chemistry of CWC sampling sites. (Total alkalinity (A_T), concentration of dissolved inorganic carbon (C_T), bicarbonate (HCO3^−), carbonate (C(OH)^−), phosphate (PO_4) and ammonium (NH_4) (all in μmol kg^-1). Also shown are pCO_2 (μatm), pH on total scale (pH_T), and the saturation state of aragonite (Ω_a). Numbers given in italics were calculated from T_a and C_T at respective depth (metre), salinity and temperature using the software package SEACARB, under the program R. For the stations of Lacaze-Duthiers (LD_9, LD_10) and the Gulf of Cassidaigne (CS_5) salinity and temperature were 38°C, and 13°C, and at the site south of Malta (MC_30) they were 38.75°C, and 12.75°C, respectively.)

| station | depth | A_T | C_T | HCO3|^− | CO3|^− | CO2 | pCO2 | Ω_a | pH_T | PO_4 | NH_4 |
|---------|-------|-----|-----|--------|-------|-----|-----|-----|-----|------|------|------|
| LD_9    | 500   | 2577| 2317| 2114   | 187   | 15.4| 395 | 2.6 | 8.07 | 0.41 | 0.29 |
| LD_10   | 267   | 2577| 2316| 2112   | 189   | 15.4| 394 | 2.7 | 8.08 | 0.22 | 0.16 |
| CS_5    | 200   | 2615| 2333| 2115   | 204   | 14.4| 368 | 3.0 | 8.11 | 0.28 | 0.20 |
| MC_30   | 690   | 2623| 2328| 2104   | 210   | 13.7| 349 | 2.8 | 8.11 | 0.20 | 0.10 |

Table 2. Results from on-board incubation of CWC in ambient sea water at three Mediterranean CWC sites: Lacaze-Duthiers (LD), Gulf of Cassidaigne (CS) and south of Malta (MC), numbers no. no. indicate station number and depth, respectively. (The three CWC species were L. pertusa (LP), M. oculata (MO) and D. dianthus (DE). Corals were either incubated in a closed or open system, DW is skeletal dry weight, average pCO_2 and Ω_a are average between beginning and end of incubation, G is calcification rate (corrected for inorganic nutrient excretion). CS5_500*: initially, seven corals were incubated, but only three could be evaluated with respect to carbonate chemistry and G in the open system. Nevertheless, DW and no. of polyps are given for all seven fragments because they were later used along with the eight fragments of the closed system of CS5_500 for repeated measurements of G under variable pCO_2 (figure 4.).

<table>
<thead>
<tr>
<th>station</th>
<th>species</th>
<th>open/closed</th>
<th>n</th>
<th>DW (G)</th>
<th>no. of polyps</th>
<th>initial pCO_2</th>
<th>average pCO_2</th>
<th>Ω_a</th>
<th>G (% d^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD9_500</td>
<td>LP</td>
<td>open</td>
<td>3</td>
<td>0.49 ± 0.09</td>
<td>3.3 ± 1.5</td>
<td>354</td>
<td>378 ± 4</td>
<td>2.6 ± 0</td>
<td>0.900 ± 0.20</td>
</tr>
<tr>
<td>LD10_267</td>
<td>LP</td>
<td>open</td>
<td>3</td>
<td>2.03 ± 0.72</td>
<td>8.3 ± 1.5</td>
<td>354</td>
<td>389 ± 10</td>
<td>2.5 ± 0.1</td>
<td>0.033 ± 0.011</td>
</tr>
<tr>
<td>LD9_500</td>
<td>LP</td>
<td>closed</td>
<td>3</td>
<td>3.36 ± 2.63</td>
<td>7.0 ± 1.7</td>
<td>347</td>
<td>441 ± 56</td>
<td>2.1 ± 0.4</td>
<td>0.034 ± 0.013</td>
</tr>
<tr>
<td>LD9_500</td>
<td>MO</td>
<td>closed</td>
<td>3</td>
<td>2.21 ± 1.38</td>
<td>n.a. ± n.a.</td>
<td>347</td>
<td>387 ± 20</td>
<td>2.5 ± 0.2</td>
<td>0.018 ± 0.018</td>
</tr>
<tr>
<td>CS5_500</td>
<td>MO</td>
<td>open</td>
<td>7</td>
<td>1.42 ± 0.15</td>
<td>47.1 ± 10.6</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>CS5_500</td>
<td>MO</td>
<td>closed</td>
<td>3</td>
<td>1.33 ± 0.10</td>
<td>40.3 ± 5.0</td>
<td>367</td>
<td>444 ± 127</td>
<td>2.4 ± 0.8</td>
<td>0.021 ± 0.017</td>
</tr>
<tr>
<td>CS5_500</td>
<td>MO</td>
<td>closed</td>
<td>8</td>
<td>1.03 ± 0.42</td>
<td>43.3 ± 12.5</td>
<td>404</td>
<td>863 ± 588</td>
<td>1.5 ± 0.8</td>
<td>0.068 ± 0.068</td>
</tr>
<tr>
<td>MC25_690</td>
<td>LP</td>
<td>open</td>
<td>1</td>
<td>3.53 ± 0</td>
<td>7.0 ± n.a.</td>
<td>433</td>
<td>686 ± 56</td>
<td>1.3 ± 0</td>
<td>0.028 ± 0</td>
</tr>
<tr>
<td>MC25_690</td>
<td>MO</td>
<td>closed</td>
<td>6</td>
<td>2.79 ± 2.38</td>
<td>23.5 ± 8.3</td>
<td>433</td>
<td>614 ± 72</td>
<td>1.6 ± 0.3</td>
<td>0.037 ± 0.036</td>
</tr>
<tr>
<td>MC25_690</td>
<td>DE</td>
<td>open</td>
<td>5</td>
<td>4.49 ± 2.50</td>
<td>3.4 ± 1.1</td>
<td>433</td>
<td>563 ± 57</td>
<td>1.8 ± 0.2</td>
<td>0.011 ± 0.007</td>
</tr>
<tr>
<td>all groups</td>
<td></td>
<td></td>
<td>40</td>
<td>2.15 ± 1.85</td>
<td>25.4 ± 20.1</td>
<td>390</td>
<td>585 ± 340</td>
<td>1.9 ± 0.6</td>
<td>0.042 ± 0.040</td>
</tr>
</tbody>
</table>

the decrease of A_T and the precipitation of CaCO_3 [37]. However, other biogeochemical processes, such as changes in inorganic nutrient concentration can also affect A_T [35]. Previous work has shown that the CWC L. pertusa can release significant amounts of inorganic nutrient during incubation [38]. Changes of A_T during the incubations were therefore corrected for the release of phosphate and ammonium as follows:

\[ G = -2A_T + ΔNH_3 + ΔPO_4 \]

Calcification rates were normalized to initial skeletal weight of the corals and are given in per cent per day (% d^-1).

Statistical analyses were conducted using the software package STATISTICA v. 7.0. The tests used are mentioned in the results subsections. Values are reported as mean ± standard deviation.

For parameters of the carbonate chemistry and inorganic nutrients at the start and end of the experiments, see tables in the electronic supplementary material.

3. RESULTS

(a) In situ sea water carbonate chemistry and inorganic nutrients

A_T and C_T of ambient sea water ranged from 2577 to 2623 and 2316 to 2333, respectively (table 1). The calculated pCO_2, pH_T and Ω_a values ranged between 349 μatm and 395 μatm, 8.07 and 8.11, and 2.58 and 2.95, respectively. Average phosphate and ammonium concentrations ranged between 0.20 μmol kg^-1 and 0.41 μmol kg^-1 and 0.03–0.29 μmol kg^-1, respectively.

(b) Changes of inorganic nutrient concentrations during the incubations

The average phosphate and ammonium release during the incubations was 0.06 ± 0.07 μmol g^-1 and 1.12 ± 1.19 μmol g^-1 skeleton per day, respectively. The lowest release of phosphate was found for Desmophyllum dianthus with 0.002 ± 0.002 μmol g^-1 skeleton per day (n = 2), while in M. oculata and L. pertusa incubations, phosphate release was 0.06 ± 0.07 μmol g^-1 skeleton per day (n = 27) and 0.08 ± 0.06 μmol g^-1 skeleton per day (n = 10), respectively. For ammonium, the highest release rates were found for M. oculata with 1.32 ± 1.37 μmol g^-1 skeleton per day, while L. pertusa released an average of 0.77 ± 0.53 μmol g^-1 skeleton per day and D. dianthus 0.92 ± 0.53 μmol g^-1 skeleton per day. Between species effects were tested for L. pertusa and M. oculata, while inorganic nutrient release was only determined for two D. dianthus specimens and was thus not considered for statistical testing. There was no species-specific effect on the release of phosphate or ammonium (t-test, t = 0.65, p = 0.52 for phosphate and t = -1.22, p = 0.23 for ammonium, n = 35 for both nutrients). Also, phosphate...
between \(-0.01\) and \(0.23\% \text{ d}^{-1}\) \((n = 36)\). Species-specific rates for \(L. \text{ pertusa}\), \(M. \text{ oculata}\) and \(D. \text{ dianthus}\) were \(0.05 \pm 0.03\% \text{ d}^{-1}\) \((n = 10)\), \(0.05 \pm 0.05\% \text{ d}^{-1}\) \((n = 21)\) and \(0.01 \pm 0.01\% \text{ d}^{-1}\) \((n = 5)\). Rates of calcification of \(L. \text{ pertusa}\) were on average higher in the open incubation system with \(0.05 \pm 0.04\% \text{ d}^{-1}\) \((n = 7)\) versus \(0.03 \pm 0.01\% \text{ d}^{-1}\) \((n = 3)\) in the closed system, while the opposite was true for \(M. \text{ oculata}\) with \(0.03 \pm 0.03\% \text{ d}^{-1}\) \((n = 9)\) and \(0.06 \pm 0.06\% \text{ d}^{-1}\) \((n = 12)\) in open and closed systems, respectively (table 2). There was no significant species effect on calcification rates between \(M. \text{ oculata}\) and \(L. \text{ pertusa}\), between open and closed system incubation nor a combined effect of species and type of incubation (two-way ANOVA, \(p = 0.98\) for the species effect, \(p = 0.93\) for the incubation effect and \(p = 0.23\) for the interaction term).

**4. DISCUSSION**

(a) **Methodological constraints**

(i) **On-board experiments**

Measuring calcification of CWCs on board allows investigation of corals in ambient sea water over a broad biogeographic range. It requires a method that is not logistically demanding in terms of laboratory facilities. The set-up used for maintaining and incubating corals served that purpose well. It uses small incubation chambers that enable measurement of changes in total alkalinity large enough to estimate rates of calcification with satisfactory

---

Figure 3. Correlation between \(G\) corrected for inorganic nutrient increase during incubation and uncorrected \((r^2 = 0.991, p < 0.001; n = 37)\).

Figure 4. Average calcification rates of \(M. \text{ oculata}\) of repeated closed system incubation at high (867 \(\mu\)atm), ambient (445 \(\mu\)atm) and low (285 \(\mu\)atm) pCO\(_2\). Data are from repeated incubations in the laboratory shortly after return from the cruise using the same coral fragments \((n = 15)\). A repeated-measures ANOVA revealed a significant effect of pCO\(_2\) on calcification. Vertical bars denote 0.95 confidence intervals.

and ammonium excretion exhibit a positive and significant correlation when normalized to skeletal weight \((R = 0.79, p < 0.001, n = 39)\).

(c) **Contribution of changes in nutrient concentration to changes in \(G\)**

There is a significant correlation between the release of nutrients and the rate of calcification \((\text{PO}_4: R = 0.72, \text{NH}_4; R = 0.79, p < 0.001\) for both, \(n = 39)\). The calcification rates estimated without \((G_{\text{uncorr}})\) and with \((G)\) correction for changes in the concentration of nutrients are significantly correlated \(\text{figure 3; } G = 1.11 \times G_{\text{uncorr}} + 0.001, \ r = 0.995, \ p < 0.001; n = 37)\). Therefore, the rate of calcification is underestimated by ca 10 per cent if nutrient excretion is not accounted for. As not all incubation vials were sub-sampled for inorganic nutrients, this linear regression function was used to correct for nutrient excretion where respective data were missing.

(d) **Calcification rates in ambient sea water**

The overall mean calcification rates of corals incubated in ambient sea water was \(0.04 \pm 0.04\% \text{ d}^{-1}\) and ranged

---

**Proc. R. Soc. B**
replication. We also tested the use of a closed incubation system. In closed systems, the CO₂ released to the incubation water by coral respiration and calcification changes the sea water carbonate chemistry during incubation. This is likely to affect calcification rates as pCO₂ increases and Ω, and pH decrease. However, systematic comparison revealed no significant difference in calcification between open and closed system incubation. Working with relatively simple and small incubation systems makes replication easier. This is an important experimental prerequisite given the high natural growth variability of CWCs that is largely owing to the age composition of polyps of a branch [16,21] and sporadic skeletal growth [16,18].

(ii) Pitfalls of alkalinity anomaly technique
The three most common methods to determine calcification rates of corals are ⁴⁵Ca-labelling [39], the buoyant weight determination [40] and the A₁ anomaly technique [37]. The alkalinity anomaly technique used in this study has the advantage that it is sensitive enough to use for short-term incubations and that corals can be kept alive. However, it has been shown that L. pertusa and M. oculata excrete inorganic nutrients and that bacterial growth is stimulated during incubations owing to the release of organic matter [20]. This may also alter the Tₐ during incubation. Negatively charged surface groups of phytoplankton and bacteria can react during titration with hydrochloric acid and the acid-base functional groups of dissolved organic carbon (DOC) in sea water can also have a small influence on Tₐ [43]. It is therefore critical to pre-filter sea water over a 0.2 µm Acrodisc. Changes in the DOC pool during incubation was not accounted for in the present study, but Kim et al. [43] suggested that the influence of DOC on A₁ might be rather small. The release of inorganic nutrients induces a 10 per cent underestimation of calcification which was accounted for by an empirical relationship (this study). Also, a 10 per cent bias is relatively small when compared with the large natural variability of CWC calcification, with a coefficient of variation of up to 100 per cent.

(b) Calcification under ambient conditions
Calcification data are now available on L. pertusa determined by the three methods mentioned earlier. Calcification ranges between 0.02 and 0.07% d⁻¹ under initial ambient conditions for corals collected in Mingulay and Skagerrak and investigated with ⁴⁵Ca [21]. For Mediterranean samples, Orejas et al. [20] estimated calcification rates of 0.02% d⁻¹ using the buoyant weight technique, and rates ranging between 0.03 and 0.09% d⁻¹ were found in the present study with the alkalinity anomaly technique. The rate of calcification of the Mediterranean species D. dianthus and M. oculata determined by buoyant weight were 0.04% d⁻¹ and 0.11% d⁻¹, respectively [20], and 0.01 and 0.02–0.07% d⁻¹ determined by the alkalinity anomaly technique (this study). Interestingly, there seems to be no systematic bias to either higher or lower calcification rates between the methods used, which provides some confidence that all three methods provide similar estimates. The method used by Orejas et al. [20] was based on long-term aquarium maintenance (256 days), while the ⁴⁵Ca and A₁ approaches were based on short-term on-board incubations (1 day) with freshly collected colonies. Our results suggest that calcification of L. pertusa and M. oculata is similar. By contrast, Orejas et al. [20] reported a calcification rate fivefold higher in M. oculata than in L. pertusa and they hypothesize that this might be owing to different allocation of energy into tissue and skeletal growth. However, there is no evidence yet that M. oculata allocates more energy into skeletal growth than L. pertusa or D. dianthus.

(i) Size matters
It has been demonstrated in L. pertusa that calcification is four orders of magnitude lower in older than in younger polyps [38]. Hence, calcification rates normalized to skeletal weight diminish relative to increasing size and age of a colony. There is no information available on the weight of coral fragments used in the study by Orejas et al. [20], but the average polyp numbers were 2.9 and 6.2 polyps per fragment for L. pertusa and M. oculata, respectively. This means these fragments were very small with half and one-fifth of the polyp number used in the present study, respectively. One exception was the size of L. pertusa used in the first open system incubation (table 2) of the present study, as these specimens were as small as the ones used by Orejas et al. [20]. The calcification rate of these small fragments was 0.09% d⁻¹ while a rate of 0.02% d⁻¹ was found by Orejas et al. [20]. This indicates that the long-term aquarium conditions were less favourable for calcification of L. pertusa of the same size class than were the short-term on-board incubations, while the calcification rates of M. oculata reported by the two studies are in good agreement.

(ii) Site-specific calcification rates
The present study also reports calcification measured in three distinct sites, providing the opportunity to assess geographical differences. Although, the Mediterranean exhibits an east–west trend in nutrient concentration [44] and in anthropogenic CO₂ uptake [29], the in situ carbonate chemistry was very similar between the sites (table 1) and there is no significant difference in calcification rate between sites. However, on a broader biogeographic and depth scale where parameters of the carbonate chemistry are more distinct from each other, patterns in calcification rates might exist. In situ studies would be the ideal method to investigate the response of CWCs to changing environmental conditions, but are logistically too demanding for empirical comparisons on a broad geographical and depth scale. However, it is important to gather comparable and empirical datasets as close to in situ as possible to derive a baseline understanding, and moreover, to better predict the potential response to environmental change scenarios.

(c) Response to reduced and elevated pCO₂
Our results clearly show that there is no negative response on calcification rates at the higher pCO₂ level (867 µatm). However, calcification almost doubled at the pre-industrial pCO₂ level (285 µatm) relative to calcification under the control at ambient pCO₂. So far, only one study has tested the effect of ocean acidification on the calcification of CWCs. It revealed a negative response with decreasing pH (higher pCO₂) in L. pertusa from the Skagerrak [21]. However, in contrast to the study on L. pertusa, Ωₐ did not drop below 1 for M. oculata in the higher pCO₂ treatment, which might explain why M. oculata did not reveal a similar negative response at higher pCO₂. While for most reef-building zoanthellate corals a negative and often linear response to increasing pCO₂ levels and lower Ωₐ has been reported [45–47],
it had already been shown for temperate corals that calcification rates can remain unaffected by pCO2 levels as high as those projected for the end of the century [48,49]. In the study of Ries et al. [48], a nonlinear response was shown with calcification rates of Oculina arbuscula remaining constant at pCO2 levels between 400 and 900 μatm and decreasing at a pCO2 of 2850 μatm. It is therefore possible that M. oculata exhibits a similar nonlinear response and additional studies would be necessary to determine at which pCO2 level (or Ωar) calcification rates start to decrease. Few studies are actually available where calcification rates were tested for lower pCO2 levels. For the tropical coral Porites lutea, a linear response to Ωar and increasing calcification rates with decreasing pCO2 were revealed [50]. For the Mediterranean Sea, it has been shown, that pH has decreased by 0.1 pH units owing to anthropogenic CO2 [29] and our results thus indicate that ocean acidification already has had a detrimental effect on calcification rates of M. oculata with a reduction by 50 per cent since pre-industrial time. Desmophyllum dianthus, M. oculata and L. pertusa have distinct sensitivities to increased temperature, with L. pertusa being the least tolerant to higher temperatures (C. Maier 2009, personal observation). This species is probably already at its highest temperature limit in the Mediterranean Sea. If the pCO2 increase since pre-industrial time had a similarly negative effect on L. pertusa calcification than it had on M. oculata, it could mean that L. pertusa might already be more negatively affected by climate change in the Mediterranean, where both temperature rise [26] and anthropogenic CO2 [29] are well documented. This might also partly explain, why M. oculata is, at the present-day, more widespread in the Mediterranean Sea than L. pertusa despite the fact that in the North Atlantic L. pertusa is the dominant CWC species. However, more studies including other parameters that may influence coral growth are needed to draw a final conclusion on a species-specific response to climate change scenarios.

We thank captains, crew and scientific shipboard staff of R/V Minibex, and R/V Urania, respectively. Cruise MEDCOR was partially funded by CNR and the EU HERMES programme, cruises on R/V Minibex were part of a project on canyons of the Mediterranean Sea (MedSeaCan) led by the Agences des aires marines protégées. Special thanks to the owners of the Mediterranean Sea Revealed by ROV surveys. Oceanography 22, 36–52. (doi:10.5670/oceanog.2009.06)
16 Mortensen, P. B. 2001 Aquarium observations on the deep-water coral Lophelia pertusa (L.) (Scleractinia) and selected associated invertebrates. Ophelia 53, 83–104.


