These are electronic appendices to the paper by Proulx et al. 2002 Older males signal more reliably. *Proc. R. Soc. Lond. B* 269, 2291—2299.

Electronic appendices are refereed with the text. However, no attempt is made to impose a uniform editorial style on the electronic appendices.

Appendix A The Proportional Reduction in Survivorship Interpretation of the Handicap Criterion

As described in the text, the handicap criterion for semelparous species can be stated as

\[
\frac{\partial^2 s(q, a)}{\partial a \partial q} - \frac{\partial s(q, a)}{\partial q} \frac{\partial s(q, a)}{s(q, a)} > 0. \tag{1}
\]

This is equivalent to the statement that \(\frac{\partial s(q, a)}{s(q, a)} \) is an increasing function of \(q \). This is a local condition about the costs of signalling relative to the level of survivorship. Now we note that if this is true for all values of \(a \) then for two values of \(q, q_1 > q_2 \) we have

\[
\frac{\partial s(q_1, a)}{s(q_1, a)} > \frac{\partial s(q_2, a)}{s(q_2, a)}. \tag{2}
\]

We can obtain a measure of the cumulative effect of this difference by integrating over all lower signaling levels to define

\[
P_1(a) = \int_0^a \frac{\partial s(q_1, y)}{s(q_1, y)} dy. \tag{3}
\]

Because the integrand is everywhere increasing in \(q \), the integral is also, giving \(P_1(a) > P_1(0) \). Now we note that \(P_1(a) = \ln(s(q_1, a)/s(q_2, a)) \), and since the log function is an increasing function it must be the case that

\[
\frac{s(q_1, a)}{s(q_2, a)} > \frac{s(q_2, a)}{s(q_2, 0)}. \tag{4}
\]

Thus, when the handicap criterion is met for all relevant signalling levels, the proportional reduction in survivorship for a given advertising level will be greater for low quality males.

Appendix B: Reproductive Value Decreases with Age

Williams (1966) first suggested that the effort put into current reproductive success should increase as individuals age. For our model we make a few simplifying assumptions which make it possible to determine how future success (reproductive value) changes with male age. We assume that a maximum age \(T \) limits the lifespan and that age specific (but quality independent) survivorship decreases with age. Thus, the reproductive values of a male in the last and second to last age class are
where \(A(q, t) \) is the optimal signalling level for a male with quality \(q \) at age \(t \) and \(p_x = 1 - \mu_x \) is the quality independent probability of surviving from age \(x \) to \(x+1 \). We wish to show is that \(w_{T-1} > w_T \). First note that at age \(T \) a male will act to maximize fitness so that the choice of \(a = A(q, T) \) maximizes \(s(q, a) \times M(a) \).

We can see that \(w_{T-1} > w_T \) by noting that if the choice \(a = A(q, T-1) = A(q, T) \) were made then
\[
w_{T-1} = s(q, A(q, T))M(A(q, T))\left(p_{T-1}s(q, A(q, T)) + 1\right) > w_T.
\]

So even if males use the same signalling strategy at \(T-1 \) as at time \(T \) then \(W_{T-1} > W_T \), so the optimal choice for \(A(q, T-1) \) must yield greater fitness, and \(W_{T-1} > W_T \).

We also wish to show that for this life history \(w_{T-1} > w_T \) for all ages. We have already established that \(w_{T-1} > w_T \) and can use induction to prove our result. By assumption we have \(p_{T-1} > p_T \), i.e. senescence acts to lower survival rates as individuals age. Now we show that if \(w_T > w_{T-1} \) then \(w_{T-1} > w_T \). The reproductive values at ages \(t \) and \(t-1 \) are
\[
\begin{align*}
w_T &= s(q, A(q, t))M(A(q, t)) + p_T s(q, A(q, t))w_{T+1} \\
w_{T-1} &= s(q, A(q, t-1))M(A(q, t-1)) + p_{T-1} s(q, A(q, t-1))w_T.
\end{align*}
\]

Now we can again ask what the value of \(w_{T-1} \) is when we let \(A(q, t-1) = A(q, t) \).
\[
\begin{align*}
w_{T-1} &= s(q, A(q, t-1))M(A(q, t-1)) + p_{T-1} s(q, A(q, t))w_T, \tag{10}
\end{align*}
\]

and because both \(p_{T-1} > p_T \) and \(w_T > w_{T-1} \) this term is greater than \(w_T \). The optimal choice of \(A(q, t-1) \) must not decrease, so \(w_{T-1} > w_T \). Thus, \(w_T \) is a decreasing function of age.

References