How superdiffusion gets arrested: Ecological encounters explain shift from Lévy to Brownian movement

Supplementary table and figures

Suppl. Table 1: Best fits of exponential distributions (e.g. Brownian walks) and Pareto distributions (e.g. Lévy walks) to individual movement trajectories. The last column indicates whether a Brownian walk better represents the observed step length distribution than a Lévy walk (0 = LW fits better than BW; 1 = BW fits better than LW). Here, we used variable lower boundary estimates \(l_{\text{min}} \) and corrected for sample size in order to compare Akaike Information Criterions (AIC).

<table>
<thead>
<tr>
<th>Density (kg m(^{-2}))</th>
<th>Mussel nr</th>
<th>Brownian walk</th>
<th>Lévy walk</th>
<th>Brownian walk fits best?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l(_{\text{min}})</td>
<td>lambda</td>
<td>AIC</td>
<td>l(_{\text{min}})</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.10</td>
<td>1.57</td>
<td>113.29</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0.10</td>
<td>0.58</td>
<td>313.33</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0.05</td>
<td>0.59</td>
<td>309.22</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0.95</td>
<td>6.99</td>
<td>-183.09</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>0.05</td>
<td>0.89</td>
<td>226.23</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>0.15</td>
<td>8.66</td>
<td>-227.78</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>0.10</td>
<td>5.33</td>
<td>-130.63</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>0.15</td>
<td>5.53</td>
<td>-137.87</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>0.05</td>
<td>3.88</td>
<td>-67.40</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0.20</td>
<td>1.52</td>
<td>120.85</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>0.10</td>
<td>11.09</td>
<td>-277.17</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>0.05</td>
<td>1.23</td>
<td>162.13</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>0.05</td>
<td>0.47</td>
<td>357.08</td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>0.05</td>
<td>0.18</td>
<td>549.22</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>0.05</td>
<td>0.99</td>
<td>205.15</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>0.05</td>
<td>20.17</td>
<td>-396.88</td>
</tr>
<tr>
<td>0</td>
<td>17</td>
<td>0.10</td>
<td>11.60</td>
<td>-286.20</td>
</tr>
<tr>
<td>0</td>
<td>18</td>
<td>0.05</td>
<td>1.28</td>
<td>154.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average 18</th>
<th>Brownian walk</th>
<th>Lévy walk</th>
<th>Brownian walk fits best?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>4.59</td>
<td>44.66</td>
<td>0.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Density (kg m(^{-2}))</th>
<th>Mussel nr</th>
<th>Brownian walk</th>
<th>Lévy walk</th>
<th>Brownian walk fits best?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>1</td>
<td>1.05</td>
<td>0.37</td>
<td>404.29</td>
</tr>
<tr>
<td>1.3</td>
<td>2</td>
<td>2.65</td>
<td>0.46</td>
<td>357.43</td>
</tr>
<tr>
<td>1.3</td>
<td>3</td>
<td>3.70</td>
<td>0.71</td>
<td>268.58</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>0.50</td>
<td>0.43</td>
<td>373.52</td>
</tr>
<tr>
<td>1.3</td>
<td>5</td>
<td>3.15</td>
<td>0.77</td>
<td>252.67</td>
</tr>
<tr>
<td>1.3</td>
<td>6</td>
<td>2.65</td>
<td>0.80</td>
<td>246.31</td>
</tr>
<tr>
<td>1.3</td>
<td>7</td>
<td>2.10</td>
<td>1.02</td>
<td>198.75</td>
</tr>
<tr>
<td>1.3</td>
<td>9</td>
<td>2.35</td>
<td>0.40</td>
<td>388.00</td>
</tr>
<tr>
<td>1.3</td>
<td>10</td>
<td>2.10</td>
<td>0.43</td>
<td>373.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average 9</th>
<th>Brownian walk</th>
<th>Lévy walk</th>
<th>Brownian walk fits best?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.25</td>
<td>0.60</td>
<td>318.13</td>
<td>2.46</td>
</tr>
<tr>
<td>Density (kg m^2)</td>
<td>Mussel nr</td>
<td>Brownian walk</td>
<td>Lévy walk</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ln_min</td>
<td>lambda</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.75</td>
<td>0.33</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.15</td>
<td>0.44</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.65</td>
<td>0.53</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2.85</td>
<td>0.26</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2.10</td>
<td>0.48</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>3.10</td>
<td>0.37</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1.05</td>
<td>0.35</td>
</tr>
<tr>
<td>Average</td>
<td>7</td>
<td>2.09</td>
<td>0.39</td>
</tr>
<tr>
<td>3.3</td>
<td>1</td>
<td>1.50</td>
<td>0.60</td>
</tr>
<tr>
<td>3.3</td>
<td>2</td>
<td>2.65</td>
<td>0.52</td>
</tr>
<tr>
<td>3.3</td>
<td>3</td>
<td>1.60</td>
<td>0.44</td>
</tr>
<tr>
<td>3.3</td>
<td>5</td>
<td>3.15</td>
<td>1.20</td>
</tr>
<tr>
<td>3.3</td>
<td>6</td>
<td>2.65</td>
<td>0.88</td>
</tr>
<tr>
<td>3.3</td>
<td>8</td>
<td>2.10</td>
<td>0.61</td>
</tr>
<tr>
<td>3.3</td>
<td>10</td>
<td>2.10</td>
<td>0.60</td>
</tr>
<tr>
<td>Average</td>
<td>7</td>
<td>2.25</td>
<td>0.69</td>
</tr>
<tr>
<td>5.2</td>
<td>1</td>
<td>1.05</td>
<td>1.25</td>
</tr>
<tr>
<td>5.2</td>
<td>2</td>
<td>2.10</td>
<td>0.88</td>
</tr>
<tr>
<td>5.2</td>
<td>3</td>
<td>3.00</td>
<td>0.89</td>
</tr>
<tr>
<td>5.2</td>
<td>4</td>
<td>3.15</td>
<td>0.76</td>
</tr>
<tr>
<td>5.2</td>
<td>5</td>
<td>3.70</td>
<td>1.12</td>
</tr>
<tr>
<td>5.2</td>
<td>7</td>
<td>3.15</td>
<td>0.78</td>
</tr>
<tr>
<td>5.2</td>
<td>9</td>
<td>3.70</td>
<td>1.00</td>
</tr>
<tr>
<td>5.2</td>
<td>10</td>
<td>2.65</td>
<td>0.75</td>
</tr>
<tr>
<td>Average</td>
<td>8</td>
<td>2.81</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Suppl. Figure 1: Individual movement trajectories of 18 mussels in solitary treatment.
Suppl. Figure 2: Individual movement trajectories of 10 mussels in low density treatment (1.3 kg m$^{-2}$).
Suppl. Figure 3: Individual movement trajectories of 10 mussels in intermediate density treatment (2.0 kg m$^{-2}$).
Suppl. Figure 4: Individual movement trajectories of 10 mussels in a high density treatment (3.3 kg m$^{-2}$).
Suppl. Figure 5: Individual movement trajectories of 10 mussels in high density treatment (5.2 kg m$^{-2}$).