
Electronic appendices are refereed with the text. However, no attempt is made to impose a uniform editorial style on the electronic appendices.
Table 2. Size, composition, reproductive output, territory size and mean heterozygosity of unique groups of subdesert mesites studied in 1997–2000. Unique groups were defined as such if new individuals accounted for >50% of the group; groups were generally caught, bled and ringed in Sep or Oct of the study period.

<table>
<thead>
<tr>
<th>group</th>
<th>season studied (Sep–Jan)</th>
<th>group composition: no. adults (proportion sampled)</th>
<th>no. eggs laid</th>
<th>no. chicks hatched</th>
<th>no. young >3 months</th>
<th>no. male offspring (proportion sampled)</th>
<th>no. female offspring (proportion sampled)</th>
<th>mean heterozygosity</th>
<th>territory size (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1a</td>
<td>1998–1999</td>
<td>3 (1)</td>
<td>2 (1)</td>
<td>2</td>
<td>1</td>
<td>1 (1)</td>
<td>0</td>
<td>1.18</td>
<td>-0.05</td>
</tr>
<tr>
<td>P1b</td>
<td>1999–2000</td>
<td>2 (1)</td>
<td>1 (1)</td>
<td>2</td>
<td>2</td>
<td>2 (0)</td>
<td>0</td>
<td>1.26</td>
<td>-0.07</td>
</tr>
<tr>
<td>P2a</td>
<td>1997–1998</td>
<td>2 (1)</td>
<td>1 (1)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1 (1)</td>
<td>0.94</td>
<td>0.16</td>
</tr>
<tr>
<td>P2b</td>
<td>1998–1999</td>
<td>1 (1)</td>
<td>2 (1)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0.83</td>
<td>0.22</td>
</tr>
<tr>
<td>P2c</td>
<td>1999–2000</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2 (0.5)</td>
<td>0.88</td>
<td>0.22</td>
</tr>
<tr>
<td>P3</td>
<td>1999–2000</td>
<td>1 (1)</td>
<td>1 (0)</td>
<td>2</td>
<td>1</td>
<td>1 (0)</td>
<td>0</td>
<td>0.94</td>
<td>0.09</td>
</tr>
<tr>
<td>P4</td>
<td>1998–1999</td>
<td>5 (0.8)</td>
<td>2 (1)</td>
<td>?</td>
<td>3</td>
<td>2</td>
<td>2 (1)</td>
<td>1.05</td>
<td>0.05</td>
</tr>
<tr>
<td>P5</td>
<td>1998–1999</td>
<td>1 (1)</td>
<td>3 (1)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0.98</td>
<td>0.09</td>
</tr>
<tr>
<td>P6</td>
<td>1997–1998</td>
<td>1 (0)</td>
<td>2 (1)</td>
<td>2</td>
<td>2</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>1.18</td>
<td>-0.07</td>
</tr>
<tr>
<td>P6</td>
<td>1999–2000</td>
<td>3 (0.67)</td>
<td>1 (1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.94</td>
<td>0.16</td>
</tr>
<tr>
<td>P7</td>
<td>1998–1999</td>
<td>1 (1)</td>
<td>2 (1)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.65</td>
<td>0.40</td>
</tr>
<tr>
<td>P7</td>
<td>1999–2000</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>2</td>
<td>1</td>
<td>2 (1)</td>
<td>0</td>
<td>1.00</td>
<td>0.11</td>
</tr>
<tr>
<td>P8</td>
<td>1998–1999</td>
<td>1 (1)</td>
<td>3 (1)</td>
<td>?</td>
<td>2</td>
<td>?</td>
<td>1 (1)</td>
<td>0.91</td>
<td>0.13</td>
</tr>
<tr>
<td>P8</td>
<td>1999–2000</td>
<td>3 (1)</td>
<td>2 (0.5)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2 (1)</td>
<td>1.23</td>
<td>-0.04</td>
</tr>
<tr>
<td>P9</td>
<td>1997–1998</td>
<td>3 (1)</td>
<td>2 (0.5)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>1.15</td>
<td>-0.06</td>
</tr>
<tr>
<td>P10</td>
<td>1999–2000</td>
<td>3 (1)</td>
<td>2 (1)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2 (1)</td>
<td>1.06</td>
<td>0.04</td>
</tr>
<tr>
<td>P12</td>
<td>1998–1999</td>
<td>2 (0.5)</td>
<td>2 (0.5)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>1 (0)</td>
<td>1.17</td>
<td>0.09</td>
</tr>
<tr>
<td>P12</td>
<td>1999–2000</td>
<td>2 (0.5)</td>
<td>1 (1)</td>
<td>?</td>
<td>2</td>
<td>?</td>
<td>1 (1)</td>
<td>1.16</td>
<td>-0.16</td>
</tr>
<tr>
<td>M7</td>
<td>1997–1998</td>
<td>4 (1)</td>
<td>2 (0)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0.94</td>
<td>0.14</td>
</tr>
<tr>
<td>M8</td>
<td>1997–1998</td>
<td>2 (1)</td>
<td>2 (1)</td>
<td>2</td>
<td>2</td>
<td>2 (1)</td>
<td>0</td>
<td>1.02</td>
<td>0.01</td>
</tr>
<tr>
<td>M9</td>
<td>1997–1998</td>
<td>3 (1)</td>
<td>2 (0.5)</td>
<td>2</td>
<td>2</td>
<td>2 (1)</td>
<td>0</td>
<td>0.91</td>
<td>0.20</td>
</tr>
<tr>
<td>M10</td>
<td>1997–1998</td>
<td>3 (1)</td>
<td>2 (1)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0.85</td>
<td>0.13</td>
</tr>
<tr>
<td>M11</td>
<td>1997–1998</td>
<td>1 (1)</td>
<td>2 (1)</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1 (1)</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Electronic Appendix A
Electronic Appendix B

Table 3. Acoustic properties of male and female songs versus their heterozygosity

<table>
<thead>
<tr>
<th>sex</th>
<th>group</th>
<th>identity</th>
<th>heterozygosity</th>
<th>mean acoustic properties of elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SH</td>
<td>IR</td>
</tr>
<tr>
<td>male</td>
<td>P1 (97)</td>
<td>SY-YY</td>
<td>1.08</td>
<td>– 0.13</td>
</tr>
<tr>
<td></td>
<td>P2 (97)</td>
<td>SG-G</td>
<td>0.86</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>P3 (98)</td>
<td>SB-G</td>
<td>0.23</td>
<td>– 0.06</td>
</tr>
<tr>
<td></td>
<td>P4 (98)</td>
<td>SR-GG</td>
<td>1.18</td>
<td>– 0.08</td>
</tr>
<tr>
<td></td>
<td>P6 (98)</td>
<td>SW-R</td>
<td>1.08</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>P7 (98)</td>
<td>RS-W</td>
<td>0.27</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>P12 (99)</td>
<td>RS-G</td>
<td>1.08</td>
<td>– 0.11</td>
</tr>
<tr>
<td></td>
<td>M7 (97)</td>
<td>SG-R</td>
<td>0.86</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>M8 (97)</td>
<td>SB-W</td>
<td>1.30</td>
<td>– 0.31</td>
</tr>
<tr>
<td></td>
<td>M9 (97)</td>
<td>SR-Y</td>
<td>1.08</td>
<td>– 0.05</td>
</tr>
<tr>
<td></td>
<td>M10 (97)</td>
<td>S-W</td>
<td>0.86</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>M10 (97)</td>
<td>S-G</td>
<td>0.86</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>M11 (97)</td>
<td>SR-R</td>
<td>1.08</td>
<td>0.74</td>
</tr>
<tr>
<td>female</td>
<td>P1 (97)</td>
<td>R-RS</td>
<td>0.94</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>P1 (97)</td>
<td>W-SW</td>
<td>1.18</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>P2 (97)</td>
<td>Y-SY</td>
<td>1.18</td>
<td>– 0.06</td>
</tr>
<tr>
<td></td>
<td>P6 (98)</td>
<td>GW-RS</td>
<td>1.18</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>P7 (99)</td>
<td>GG-RS</td>
<td>0.47</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>P10 (99)</td>
<td>Y-SR</td>
<td>0.90</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>P10 (99)</td>
<td>BB-SR</td>
<td>1.19</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>M8 (97)</td>
<td>R-SR</td>
<td>0.71</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>M10 (97)</td>
<td>R-SY</td>
<td>0.71</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>M10 (97)</td>
<td>R-S</td>
<td>0.71</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Electronic Appendix C.

Table 4. Genetic characteristics of nine microsatellite markers used in this study; values are derived using programs CERVUS 2.0 (Marshall et al. 1998).
\(H_E \): observed heterozygosity; \(H_O \): expected heterozygosity; ‘exl(1)’: exclusion probability of parent 1; ‘excl(2)’: exclusion probability of parent 2; PIC, polymorphic information content (i.e. the probability that the parent is heterozygous multiplied by the probability that the offspring is informative); * significant deviation from ‘Hardy-Weinburg’ proportions at \(p < 0.001 \). MbM1 was isolated in Melbourne, Australia; the remainder were isolated in Cambridge, UK.

<table>
<thead>
<tr>
<th>locus</th>
<th>primers (5’-3’)</th>
<th>repeat</th>
<th>clone size (bp)</th>
<th>no. of alleles</th>
<th>no. individuals typed per locus</th>
<th>(H_E)</th>
<th>(H_O)</th>
<th>PIC</th>
<th>excl(1)</th>
<th>excl(2)</th>
</tr>
</thead>
</table>
| MbM1 | L: GGACAACCTCACCTGAGGAACC
R: GTAGGGAGAGGATGCAAATCAGG | (CA)\(_3\)AA(CA)\(_3\) | 177-198 | 8 | 98 | 0.849 | 0.826 | 0.802 | 0.484 | 0.658 |
| Mbe2 | L: TCAGCACTGCTCTTTGCATC
R: ATTTGTGGATGCAAATCAGG | (AAAC)\(_6\) | 220 | 2 | 96 | 0.077 | 0.074 | 0.071 | 0.003 | 0.036 |
| Mbe3 | L: TGCCATAAGTTGTCTGTC
R: GATCGTGTTGTTGTCATG | (AAAC)\(_6\) | 152 | 2 | 96 | 0.209 | 0.238 | 0.209 | 0.028 | 0.104 |
| Mbe4 | L: TCTCAACACACCGGATATGG
R: CAAATGGAAATCAGGGATATGG | (AAAC)\(_6\) | 190 | 3 | 96 | 0.187 | 0.223 | 0.200 | 0.025 | 0.101 |
| Mbe6 | L: TAGGAGTCAGCAGCAAGTG
R: GATCTGTCTCTTTGTGGTG | (AAAC)\(_7\) | 101 | 4 | 95 | 0.538 | 0.578 | 0.529 | 0.178 | 0.340 |
| Mbe8 | L: TCAGGCCTTAGCTATACCATC
R: GATCGTGTTGCTGACCTGTTC | (CA)\(_3\) | 159 | 9 | 98 | 0.828 | 0.774 | 0.737 | 0.389 | 0.568 |
| Mbe9 | L: AGTCGCAAAGCTGGAACTG
R: AATAGCTCTTGGGCACATCC | (CAAA)\(_6\) | 318 | 15 | 98 | 0.800 | 0.901 | 0.887 | 0.653 | 0.790 |
| Mbe12 | L: CAGGGATGCTATCATGAGG
R: GATCTCATAGGTGGATATGG | (GTTT)\(_3\) (TTT)\(_4\) | 186 | 4 | 98 | 0.237 | 0.456* | 0.409 | 0.104 | 0.239 |
| Mbe13 | L: GAAGTCAACACTTGTGGAC
R: GTGGAAATGTGGTCAGCTTG | (AAAC)\(_3\) | 279 | 3 | 85 | 0.516 | 0.586 | 0.518 | 0.170 | 0.315 |
Additional reference