Agonistic signals received by an arthropod filiform hair allude to the prevalence of near-field sound communication

Roger D. Santer* and Eileen A. Hebets

School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Arthropod filiform hairs respond to air particle movements and are among the most sensitive animal sensory organs. In many species, they are tuned to detect predators or prey and trigger escape or prey capture behaviours. Here we show for the first time that these hairs also receive intraspecific near-field sound signals in an arachnid. During agonistic encounters, whip spiders (Arachnida, Amblypygi) perform antenniform leg vibration (ALV) displays that have significantly longer duration in contest winners than losers. During an ALV display: (i) the vibrating antenniform leg of the displaying whip spider is positioned close to the trichobothria (filiform hairs) on its opponent's walking legs, (ii) the vibrating antenniform leg can excite these trichobothria via air movements and without direct contact, (iii) the antenniform leg of the displaying whip spider vibrates at a frequency that causes particularly strong, sustained excitation and little adaptation in the trichobothria, and (iv) the duration of an ALV display can be extracted from the response of a trichobothrium. Since filiform hairs are widespread among arthropods, communication via such hairs could be extremely prevalent.

Keywords: communication; trichobothria; signal-receiver match; amblypygid; arachnid; whip spider

1. INTRODUCTION

Arthropod filiform hairs detect air (or water) particle displacements (Görner & Andrews 1969) and are among the most sensitive animal sensory organs (Shimozawa et al. 2003). Such near-field particle movements are used in intraspecific communication by a restricted group of insects, but these use specialized organs for particle movement detection, such as the Johnston’s organ of some insect antennae (e.g. Johnston 1855; Tauber & Eberl 2003; Gibson & Russell 2006; Tsujiuchi et al. 2007). Whether filiform hairs also receive such intraspecific signals is unclear, but given their abundance across different arthropod taxa, their use in signal reception may indicate that near-field sounds are a far more common communicatory modality than previously realized.

Insect filiform hairs and arachnid trichobothria (analogous, but not homologous, sensilla) function in the detection and evasion of predators and their signal properties are often tuned to this role (e.g. Camhi et al. 1978; Tautz & Markl 1978; Igelmund & Wendler 1991; Gnatzy 1996; Suter 2003). For example, the population of filiform hairs on a cricket’s cerci are tuned to the 120–200 Hz range of acoustic frequencies produced by flying insect predators (Magal et al. 2006). Likewise, arachnid trichobothria effectively detect prey movements and mediate prey capture behaviours (e.g. Beck & Görke 1974; Barth & Höller 1999; Barth 2002). A possible role for these hairs in intraspecific communication is currently illustrated by only one example: in an African cave cricket lacking stridulatory organs, males produce silent wing flicks during courtship and aggressive encounters that induce air currents which excite the filiform hairs of females (e.g. Heidelbach et al. 1991). These are proposed to cause the receiving female to become more passive and less responsive to disturbing stimuli (Heidelbach & Dambach 1997), although it has not yet been shown that the effective component of this signal is air movement rather than visual, olfactory or vibration cues (Pollack et al. 1998). Nevertheless, since near-field sounds can be produced using limb movements, intraspecific signals of this sort could be widespread among animals possessing filiform hairs.

Here we investigate whether arachnid trichobothria function in intraspecific near-field sound detection during the agonistic contests of whip spiders (Arachnida, Amblypygi). Whip spiders encompass their own arachnid order and possess enlarged, spiny pedipalps, and modified (antenniform) first legs used as feelers rather than walking legs. Contests consist of a sequence of ritualized displays, the most striking of which is a rapid vibration of the displayer’s outstretched antenniform leg close to its opponent (Alexander 1962; Weygoldt 2000; Fowler-Finn & Hebets 2006). In complete darkness (excluding visual detection), this display is performed for longer by contest winners than losers, and probably conveys information used to resolve contest outcome (Fowler-Finn & Hebets 2006).

We show that the agonistic antenniform leg vibrations (ALVs) of the whip spider Phrynus marginemaculatus are received by trichobothria and are suited to eliciting a particularly strong response in them. During ALVs, the vibrating antenniform leg is positioned close to the receiver’s trichobothria; ALV excites these trichobothria...
via near-field sound and occurs at a frequency causing an especially strong and sustained response in them. As a result, ALV duration can be extracted from the trichobothria response. This is the first reported match between an intraspecific near-field sound signal and the response properties of a filiform hair. We suggest that such near-field sound communication may be more common across arthropod species possessing filiform hairs than previously recognized.

2. MATERIAL AND METHODS

Male *P. marginaculatus* were collected from Big Pine Key, FL, USA, in August 2006 and housed on a reversed 12:12 hours light cycle. Experiments were performed at 23–24°C during the subjective night.

(a) Investigating production and reception of ALV

We staged 21 agonistic encounters between eight mature male whip spiders. Each animal was paired in multiple contests with previously unencountered opponents. Contests were separated by more than 8 days to exclude stress or fatigue effects.

Contests were staged in a 20 cm diameter circular arena with 5 cm high acetate sides. Lighting was from standard fluorescent room lights and an infrared LED source (StroboLED v3, AOS technologies, Baden, Switzerland) to allow filming; we noted no effects of lighting on contest behaviour. Each contest was filmed at low speed from three angles (front, back and top) using mirrors and a horizontally mounted digital camcorder (DCR-HC65, Sony Electronics, Inc., USA). An ALV display from each animal was also filmed simultaneously at 500FPS using a Fastcam 1024PCI high-speed digital camera (Photron USA, San Diego, CA, USA) mounted next to the camcorder. The short high-speed recording length, and time taken to write captured video to disk, prevented us from filming ALVs of both individuals in a contest.

We used low-speed films to measure contest phases observed, contest duration and ALV duration. We used high-speed films to analyse the period and amplitude of antenniform leg movement during ALV and the location of the display relative to the receiver (electronic supplementary material).

(b) Investigating sensory cell responses to ALVs

Trichobothrium recordings were made from the eight males used in behavioural experiments (after more than four weeks), plus two males that matured during those experiments.记录 from both leg 3 trichobothria in separate experiments. Whip spiders were fixed in a standardized standing position using plasticine and insect pins (leg 3 tibia flexed 90° to femur and 45° to horizontal). Recordings were made using two 50 μm copper wires insulated but for their tips (Advent Research Materials Ltd, Eynsham, UK), inserted through the walking leg femur. Electrode wires did not interfere with trichobothria movements. Recordings were digitally amplified using a standard AC amplifier and captured to disk using a power 1401 A-to-D converter and Spike 2 v.5 for Windows (Cambridge Electronic Design Ltd, Cambridge, UK).

Only the trichobothrium under investigation in a particular experiment was recorded: the other patella trichobothrium was removed and the tibia, tarsus and metatarsus of leg 3 were tightly covered with aluminium foil. Manual stimulation of the hair, and comparison with responses to directed air puffs, identified the trichobothrium being recorded.

We could not measure the airflows induced by ALVs, so to reproduce them we used a stimulator (after Widmer et al. 2005) that vibrated a 200 μm diameter tungsten wire. Since the back and forth movements of the antenniform leg during ALV are a dipole source, moving this similarly sized wire in the same way should induce the same air movements. Briefly, sine wave voltages moved the voice coil of a vertically mounted mini speaker in the horizontal plane. Attached perpendicular to the voice coil was a tungsten wire bent at 90° to leave a 27 mm horizontal portion of wire that moved from side to side with movements of the speaker voice coil. The entire stimulator, excluding only the horizontal wire portion, was shielded from the preparation so that excitation came from the side-to-side movement of the wire only (electronic supplementary material). This was confirmed in control experiments (electronic supplementary material). Speaker movements were measured using an infrared LED–photodiode pair.

We used stimulus vibration frequencies of 1–120 Hz. Oscillation of the stimulus wire tip had a mean amplitude of 2600 μm (measured using a high-speed camera and dissecting microscope). Individual stimulus amplitude varied from this mean by up to 150 μm, due to flexions of the tungsten wire that we could not control. These variations did not explain overall patterns in our data (e.g. figure 3), and were within the range seen during whip spider ALV. The tungsten wire was positioned from anterior to posterior over the trichobothrium under investigation—30° angle to tibia, 1 mm above the trichobothrium cup and protruding 1 mm past it posteriorly—using a micromanipulator. Stimuli had 5, 20 or 90 s durations and were delivered using a 120 s interval. Each trichobothrium was recorded in six whip spiders; each received four to six presentations of each stimulus.

Whip spiders are difficult to collect and recovered post-experiment. We did not sacrifice animals to make trichobothrium measurements, but one large adult male was sacrificed for reasons unconnected with this study. We made measurements of both patella trichobothria from its removed left leg 3 using a dissecting microscope, Spot Flex 64MP digital camera (Diagnostic Instruments, Inc., Sterling Heights, MI, USA) and ImagePro Discovery software (Media Cybernetics, Inc., Bethesda, MD, USA).

Unless otherwise stated, we quote means ± s.e.m.

3. RESULTS

(a) Description of ALV display

Whip spider contests staged in this study were typical of those described previously and ALV was observed in 73.7% (14) of contests (electronic supplementary material). During ALV, the displaying whip spider extended one antenniform leg towards its opponent and rapidly vibrated it from side to side in the horizontal plane (figure 1a). ALV made no audible sound and was sometimes performed simultaneously by both competitors. The contest winners performed ALVs for a significantly greater fraction of total contest duration than the losers (one-tailed t-test against 0, \(t=2.86,\)
filiform hair and near-field sound signal R. D. Santer & E. A. Hebets 365

Reception of ALV displays
From the side, the signaller's antenniform leg arched downwards; only its tip came close to the receiver's rearmost leg or opisthosoma (abdomen). Sometimes the tip of the signaller's antenniform leg came into close proximity with the receiver and may have contacted it (we could not be certain of contact since the antenniform leg did not flex as during infrequent strong contact). The frequencies at which ALV cycles might have contacted the receiver for each animal were 0.00, 0.00, 0.41, 0.47, 0.48, 0.68 and 0.81. These possible contacts normally occurred with the tibia or patella of the receiver's rearmost legs, or with the side of its opisthosoma, but they appeared too irregular to be the primary means of ALV reception.

During ALV, the antenniform leg of a signaller was located above the receiver's proximal walking legs for the greatest proportion of display duration, often as little as 1 mm above them (figure 2a). We found two trichobothria on the dorsal and the anterior patellae of the walking legs that would be particularly close to an ALV display. We term these trichobothria Pa1 and Pa2, respectively (figure 2b). Pa1 is on the dorsal patella, approximately 280 μm from its distal margin. In an adult male whip spider, its length was 386 μm and it was easily deflected by air currents and almost constantly in motion during observation. Pa2 is more anterior than Pa1, approximately 100 μm from the patella’s distal margin. In an adult male whip spider, its length was 193 μm and it was less easily stimulated than Pa1, requiring directed air currents. While standing, the dorsal surface of the leg is tilted posteriorly, so that the two trichobothria project rearwards (Pa1) and upwards (Pa2).

(c) **Trichobothrium responses to ALV**
Electrophysiological recordings showed that trichobothria Pa1 and Pa2 responded to direct contact (data not shown). We wanted to see whether ALV displays could also excite these trichobothria without contact via near-field sound. We simulated the air movements induced by ALV using a device that moved a wire of the same thickness as an antenniform leg at an equivalent amplitude and frequency to real ALV displays (§2; electronic supplementary material). With this stimulus positioned as during ALV, without physical contact between stimulus and trichobothrium, we recorded action potentials in Pa1 and Pa2 in response to simulated ALV (figure 3a,b). We noted two action potentials from Pa1 and one from Pa2. These were phase-locked to the ALV stimulus across a range of vibration frequencies (from 1 to 120 Hz; electronic supplementary material). However, higher simulated ALV frequencies caused faster adaptation of the responses of both trichobothria (figure 3c). Thus, the strongest response over time was induced by the highest simulated ALV frequency that did not induce strong adaptation, as indicated by total action potential numbers induced in each trichobothrium by each stimulus. These counts fitted a lognormal distribution around the most common frequencies in real ALVs for both Pa1 and Pa2 (figure 3d).

When stimulated with 90 s simulated ALVs (equal in length to the longest bouts observed) at 25 Hz, Pa1 mechanoreceptors adapted but remained responsive throughout stimulation (figure 4a). Repeated 90 or 20 s simulated ALV bouts separated by 5 s caused little habituation in Pa1 mechanoreceptors (figure 4b,c). These could signal ALV duration: when ten 20 s vibration bouts separated by a 5 s inter-stimulus interval were delivered to a single individual (figure 4c), the mean time between first and last action potential in each bout was 19.75 ± 0.068 s for the larger action potential and 19.93 ± 0.014 s for the smaller action potential, matching the 20 s stimulus duration.
We describe the agonistic ALVs of whip spiders. These displays are produced for longer by the contest winners than the losers and have previously been proposed to resolve agonistic contests, and for a significantly greater duration by the contest winners. Our data suggest that agonistic ALVs are directed towards and received by the opponent’s trichobothria. During ALV, the antenniform leg of the signaller is positioned close to the patella trichobothria of the receiver, indicating that they would be strongly stimulated by near-field air movements induced by ALV. Furthermore, the frequency at which the antenniform leg is vibrated during ALV causes the strongest sustained response in the trichobothria via near-field sound. This is because lower vibration frequencies cause less spikes per second (because spikes are phase-locked to the stimulus) and higher vibration frequencies cause the response to be curtailed by adaptation. As a result, the trichobothria can convey information used to resolve agonistic contests.

Figure 2. ALV occurs close to the walking leg trichobothria. (a) The mean proportion of ALV display duration that the signaller’s antenniform leg overlays particular receiver body regions. Proportions of ALV duration are indicated by: white, 0.00; light grey, 0.01–0.25; dark grey, 0.26–0.50; black, greater than 0.51. The receiver is drawn from a dorsal aspect and body regions are as follows: opisthosoma (or abdomen; Op.); prosoma (or cephalothorax; Pro.); pedipalps; proximal leg regions (p); and distal leg regions (d). Proportions of ALV duration were calculated by recording antenniform leg position at 10 ms intervals from 1600 ms samples of ALV for each of the seven whip spiders. Mean proportions of ALV duration and standard deviations for each body region are listed in the electronic supplementary material. Data are corrected as if the signaller performed ALV with its left leg dorsal aspect twisted posteriorly. F, femur; Pa, patella; Ti, tibia; Pa1 and Pa2, patella trichobothria 1 and 2.

4. DISCUSSION

We describe the agonistic ALVs of whip spiders. These displays are produced for longer by the contest winners than the losers and have previously been proposed to convey information used to resolve agonistic contests (Fowler-Finn & Hebets 2006). The form of an ALV display is suited to providing sustained, strong excitation to the two closest trichobothria on the walking leg patellae, and thus these trichobothria can convey ALV duration to the central nervous system. This is, to our knowledge, the first reported match between an intraspecific near-field sound signal and the response properties of a filiform hair.

ALVs are produced by whip spiders during agonistic contests, and for a significantly greater duration by the contest winners than the losers (Alexander 1962; Weygoldt 2000; Fowler-Finn & Hebets 2006). ALVs occurred in 73.7% of contests; normally one individual retreated following these, and only 10.5% of contests escalated to physical contact. This suggests that ALV displays are signals conveying information important for resolving contest outcome.

Our data suggest that agonistic ALVs are directed towards and received by the opponent’s trichobothria. During ALV, the antenniform leg of the signaller is positioned close to the patella trichobothria of the receiver, indicating that they would be strongly stimulated by near-field air movements induced by ALV. Furthermore, the frequency at which the antenniform leg is vibrated during ALV causes the strongest sustained response in the trichobothria via near-field sound. This is because lower vibration frequencies cause less spikes per second (because spikes are phase-locked to the stimulus) and higher vibration frequencies cause the response to be curtailed by adaptation. As a result, the trichobothria can...
respond throughout simulated vibrations equal in length to the longest ALV observed during whip spider contests. Furthermore, real ALV displays were often composed of several vibration bouts. The lengths of simulated bouts, separated by seconds, could be extracted from the trichobothrium response. Therefore, these trichobothria are ideally suited to receiving the ALV signal and conveying its duration to the central nervous system. The match between signal and trichobothrium response is good evidence that the trichobothria are the intended target of the vibration signal, rather than being excited by it incidentally (e.g. Pollack et al. 1998).

ALV probably conveys information primarily in the near-field sound modality. Whip spiders are nocturnal and ALV displays occur, and correlate with contest outcome, in complete darkness, which excludes visual detection (Fowler-Finn & Hebets 2006). Although vibrations might be transferred through the signaller’s body to the substrate, whip spiders lack organs specialized for receiving such vibrations (Barth & Stagl 1976), indicating that they may be less sensitive to these than to air particle movements received by the trichobothria. Finally, physical contact between the vibrating antenniform leg and the receiver, as was previously thought to occur (Alexander 1962; Weygoldt 2000), was too infrequent to reliably convey display duration. Nevertheless, when such contact occurred, it was often with the leg regions bearing trichobothria, so these hairs could reliably detect contacts similarly to the long hair sensilla on some spiders’ forelegs (Albert et al. 2001).

As discussed above, the form of ALV is suited to eliciting the maximum number of action potentials in the patella trichobothria over the total duration of the display. The evolutionary implications of this match are intriguing: since trichobothria have repeatedly been shown to function in predator or prey detection, and their response properties are well tuned to such a role, ALV may deliberately exploit these response properties, suggesting a sensory bias origin of signal form (e.g. Basolo 1990; Ryan 1990; Proctor 1991). The presence of trichobothria on leg regions typically stimulated during ALV may even suggest that they have been co-opted to function specifically in signal detection from an original predator detection role (e.g. Conner 1999).

The only previously proposed example of near-field sound communication via filiform hairs are the silent wing flicks of male African cave crickets that excite the filiform hairs of females (Heidelbach et al. 1991; Heidelbach & Dambach 1997). However, the exact nature of this signal is still unclear: wing flicks cannot be associated unequivocally with a receiver response; and it has not yet been shown that air movements, rather than visual or other stimuli, are the effective modality. In contrast, whip spider ALV duration clearly predicts contest outcome, and the trichobothria appear to be the only suitable means for its detection. This may also be the first clear demonstration of intraspecific airborne sound signalling of any kind by an arachnid: although courting spiders make audible sounds, it is substrate-borne vibrations that are sufficient to elicit a behavioural response in females (e.g. Barth & Rovner 1981). Spiders do have slit sensilla that could receive the air pressure component of these sounds (Barth 1982), and trichobothria that could receive air particle movements (e.g. Barth 2000), but experiments designed to test these airborne signal components could not isolate substrate-borne ones (Rovner 1967; Barth 1982). Regardless, considering the incredible sensitivity of arthropod filiform hairs, it would be surprising if near-field sound communication were not more widespread than these two examples (e.g. Barth 2000). The courtship behaviours of some whip spiders and true spiders would certainly seem probable candidates (Rovner 1980; Barth & Rovner 1981; Weygoldt 2000), but future work is needed to explore the evolutionary patterns and taxonomic breadth of various filiform hair functions and reveal the prevalence and importance of near-field communication.
We thank the National Key Deer Refuge for permitting whip spider collection; A. S. French and J. R. Kelty for their help with stimulator construction; K. D. Fowler-Finn, A. S. Rundus, S. K. Schwartz, P. S. Shamble, D. J. Wilgers and R. H. Willemart for their comments and discussion. Funding was from a Searle Scholar grant to E.A.H.

REFERENCES

