Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography

Pierre-Olivier Antoine1,3,*, Laurent Marivaux1, Darin A. Croft4, Guillaume Billet5, Morgan Ganerød6, Carlos Jaramillo7, Thomas Martin5, Maëva J. Orliac1,8, Julia Tejada9,10, Ali J. Altamirano9, Francis Duranthon11, Grégory Fanjat2, Sonia Rousse3 and Rodolfo Salas Gismondi9

1Institut des Sciences de l’Évolution, UMR-CNRS 5554, CC064, and 2Géosciences Montpellier, FR 2035 CNRS, CC060, Université Montpellier 2, 34095 Montpellier, France 3Géosciences-Environnement Toulouse, Université de Toulouse, UMR 5563 CNRS, UR 234 IRD, 31400 Toulouse, France 4Department of Anatomy, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA 5Steinmann Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, 53115 Bonn, Germany 6Geological Survey of Norway, 7491 Trondheim, Norway 7Center for Tropical Paleoenecology and Archeology, Smithsonian Tropical Research Institute, Balboa, Ancon, AA 0843-03092, Panama 8Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA 9Departamento de Paleontología de Vertebrados, Museo de Historia Natural-Universidad Nacional Mayor San Marcos, Avenida Arenales 1256, Lima 14, Peru 10Institut Français d’Études Andines, Avenida Arqutipa 4500, Lima 18, Peru 11Muséum d’Histoire Naturelle/AMIS - UMR 5288 CNRS, 31000 Toulouse, France

The long-term isolation of South America during most of the Cenozoic produced a highly peculiar terrestrial vertebrate biota, with a wide array of mammal groups, among which caviomorph rodents and platyrrhine primates are Mid-Cenozoic immigrants. In the absence of indisputable pre-Oligocene South American rodents or primates, the mode, timing and biogeography of these extraordinary dispersals remained debated. Here, we describe South America’s oldest known rodents, based on a new diverse caviomorph assemblage from the late Middle Eocene (approx. 41 Ma) of Peru, including five small rodents with three stem caviomorphs. Instead of being tied to the Eocene/Oligocene global cooling and drying episode (approx. 34 Ma), as previously considered, the arrival of caviomorphs and their initial radiation in South America probably occurred under much warmer and wetter conditions, around the Mid-Eocene Climatic Optimum. Our phylogenetic results reaffirm the African origin of South American rodents and support a trans-Atlantic dispersal of these mammals during Middle Eocene times. This discovery further extends the gap (approx. 15 Myr) between first appearances of rodents and primates in South America.

Keywords: South America; Hystricognathi; Mid-Eocene climatic optimum; phylogeny; Platyrrhini

1. INTRODUCTION

The origin and biogeographic history of South American caviomorph rodents (e.g. guinea pigs, chinchillas, capybara) and platyrrhine primates (e.g. marmosets, capuchins, spider monkeys) are hotly debated issues in mammal evolution [1–14]. Fossil-constrained molecular analyses for both groups suggest either a Cretaceous vicariance event related to the break-up of Gondwana or an Eocene dispersal to South America, probably from Africa [9,15]. In the absence of indisputable pre-Oligocene South American rodent or platyrrhine primates [16–18], the mode, timing and biogeography of these dispersals have so far remained poorly constrained [5,13,19,20]. Until now, the earliest South American hystricognathous rodents described, from low-latitude Santa Rosa [21], Peru (latest Eocene–Oligocene [13,20]) and higher-latitude Tinguiririca [5,19], Chile (earliest Oligocene, approx. 32 Ma), primarily included crown-group caviomorphs, thereby suggesting a much earlier in situ initial radiation of the group.

Here, we report the discovery of the oldest known South American caviomorphs, deriving from a 30-cm-thick lens of light-grey clay with irregular limestone concretions at the top of the Yahuarango Formation [22], designated CTA-27 (figure 1). A Middle Eocene age for CTA-27 (earlier than 40.94 Ma) is based on 40Ar/39Ar step heating of single...
Figure 1. Stratigraphical range of CTA-27 locality (inferred by radioisotopy, vertebrate biochronology and palynostratigraphy) and Mid-Cenozoic global climate. The age of CTA-27 is bracketed between 41.6 Ma (base of the Gran Barranca Member [23,24]) and 40.94 Ma (youngest age provided by 40Ar/39Ar datings at CTA-29; electronic supplementary material, figure S6). Age of both key Palaeogene vertebrate localities and biotic events of South America are based on data from Flynn et al. [19], Goin et al. [25,26], Goin & Candela [27], Shockey et al. [28], López [29] and Vucetich et al. [13]. Global climate is inferred by the δ18O temperature scale of Zachos et al. [30] (red curve to the right), showing the Mid-Eocene Climatic Optimum by the time of deposition of CTA-27. Barran., Barrancan; Barton., Bartonian; FAD, first appearance datum; Mus., Mustersan; Priabon., Priabonian; SALMA, South American Land Mammal Age; Tingui., Tinguirirican.

bioitite grains separated from a tuffaceous silt located 47 m above the fossiliferous level in the same section, and dated to 43.44 ± 2.5 Ma (see the electronic supplementary material). As summarized in figure 1, a late Middle Eocene age for CTA-27 (41.6–40.94 Ma) is further refined by mammalian biochronology: in CTA-27, the rodents were found in association with typical Middle to Late Eocene marsupials and endemic ungulates, such as the polydolopimorph Punadolops (Barrancan–Mustersan South American Land Mammal Age, SALMA [25]), an astegotherine dasypodine armadillo close to Prostegotherium notostylopianum (Vacan–Barrancan SALMA [31]), a small archaeohyracid notoungulate related to Eohyrax (Barrancan) and Panahyrax (Barrancan–Mustersan [32]), a small pyrothere closely allied to Griphodon (Vacan–Mustersan), and an unidentified trigonocephalid astrapothere (Vacan–Mustersan), which consistently constrain a Barrancan–Mustersan biochronological range (41.6–35.8 Ma; figure 1; electronic supplementary material) for the locality. CTA-27 also has yielded a diversified, strictly continental palynoflora characteristic of the Middle Eocene to Early Oligocene (44.8–30.9 Ma; palynological zones T6–T10 [33]; figure 1 and electronic supplementary material). The flora indicates a tropical rainforest habitat, with no evidence of savannah vegetation.

The specimens described here are permanently stored in the Museum of Natural History in Lima, Peru (MUSM). These new rodents allow us to document the pattern and the timing of major events in early hystricognath evolution and biogeography.

2. RESULTS

Systematic palaeontology

Placentalia Owen, 1837; Order Rodentia Bowdich, 1821; Infraorder Hystricognathi Tullberg, 1899; Parvorder Placentalia Owen, 1837; Order Rodentia Bowdich, 1821;

Plesion Cachiyacu, New Genus.

Type species. Cachiyacuy contamanensis, New Species. Etymology. Contraction of Cachiyacu (Local River) and cuy, Quechua for guinea pig.

Generic Diagnosis. Rodents characterized by brachydont and bunolophodont teeth. Upper molars are pentalophodont with strong mesoloph and distinct and long metaloph. Differs from Eobranisamys, Branisamys, Eosallamys, Sallamys, Eoespina and Draconomys in showing a long metaloph not backwardly directed and connected to the posteroloph, but transverse and without lingual connection. Accessory, thin and short enamel crests may connect the metaloph to the posteroloph and/or to the mesoloph. Differs from...
Eobransamys, Brantriamys and Canaanimys in the absence of taeniodont pattern on upper teeth owing to the presence of a strong lingual protoloph. Differs from Eoinamys and Incamys in having brachydont instead of hypsodont teeth, pentalophodont instead of tetalophodont upper molars, thinner and transverse instead of strong and oblique crests, and in the absence of a taeniodont pattern on both upper and lower teeth (i.e. lingual protoloph and anterior arm of hypocoenid lacking).

Other species. Cachiyacuy huumeli, New Species.

Formation and age. Top of the Yahuarango Formation [22], latest Lutetian in age (≈41 Ma).

Cachiyacuy contamanensis, New Species.

Etymology. Refers to the geographical provenance of the specimens, close to the city of Contamana.

Holotype. MUSM 1871, a right M2 (figure 2b).

Type locality. CTA-27 Locality, Loreto, Peru.

Formation and age. Top of the Yahuarango Formation, latest Lutetian in age (approx. 41 Ma).

Diagnosis. Cachiyacuy contamanensis (body mass estimated at 80–120 g) is approximately 30 per cent larger than C. kummeli. Differs from C. kummeli in having upper molars with generally buccal cusps and styles verse crests and the cusp(id)s are more salient than in \(C.\) contamanensis. The molars have slightly thinner transverse crests and the cusp(id)s are more salient than in \(C.\) contamanensis.

Plesion Canaanimys, New Genus.

Type species. Canaanimys maquinesis, New Species.

Etymology. Combination of \(Cana\)n, name of a local Shipibo native community, and \(mys\), Greek for mouse.

Generic diagnosis. As for the type species.

Canaanimys maquinesis, New Species.

Etymology. Specific epithet is for Maquía, the locality where the fossils were found.

Holotype. MUSM 1890, a right M2 (figure 2a).

Type locality. CTA-27 Locality, Loreto, Peru.

Formation and age. Top of the Yahuarango Formation [22], latest Lutetian in age (approx. 41 Ma).

Diagnosis. Tiny rodent (body mass estimated at approx. 40 g) characterized by brachydont and bunolophodont teeth. It differs from all other caviomorphs in having teeth with moderately low and sharp transverse crest(id)s, lower molars having generally incomplete metalophulid II, and pentalophodont upper molars with a well-developed metaloph that turns anteriorly (not posteriorly) and connects either to the mesolophule lingually or to the mesial extremity of the anterior arm of the hypocone—a primitive condition that is reminiscent of that found in stem Hystricognathi (e.g. Baluchimys, Protophiomyx, Wåslanmys, Phiomys, Hlodshubia, Bugtymys and Ottomantia). The lingual protoloph is either slightly developed or lacking (i.e. taeniodont pattern).

In addition, four teeth are referred to the cavioid Eobransamys sp. (figure 2a–d) and 2 diminutive teeth to the octodontoid cf. Eoespina sp. (figure 2e–f). The teeth referred to Eobransamys sp., notably the only upper molar (figure 2b), display features reminiscent of upper molars of Eobransamys romeropittmanae and of Eobransamys riverai from Santa Rosa, Peru [21]. This is particularly evident in the development of a taeniodont (absence of lingual protoloph, i.e. hypoflexus and paraflexus are merged) and pentalophodont pattern, characterized by the presence of a strong and transverse mesolophule, and a strong and distinct metaloph, which is transverse and connected to the posteroloph. However, Eobransamys sp. differs substantially from E. romeropittmanae in being about half the size, and from E. riverai in being 20 per cent smaller and in showing sharper crests and more salient cusps (plesiomorphic traits). The 2 diminutive M2s referred to cf. Eoespina sp. (figure 2e–f) resemble those of Eoespina woodi from Santa Rosa [21], in showing a tetralophodont pattern with strong and long mesolophule, antero-, proto- and posteroloph (no metaloph), and having a rounded crown outline in occlusal view. The specimens from CTA-27 differ in having less inflated cusps, and in showing a mesiodistally narrower and lingually constricted internal sinus (hypoflexus).

3. DISCUSSION

All five rodent taxa currently known from Contamana CTA-27 are remarkably small compared with subsequent caviomorphs (including those from Tinguiririca [5], Santa Rosa [21], La Cantera [13] and younger localities [4]), with a 30–120 g estimated adult body mass range: \(C.\) maquinesis (figure 2t–z), \(C.\) kummeli (figure 2l–i) and cf. Eoespina sp. (figure 2e–f) were meadow vole-sized, while \(C.\) contamanensis (figure 2a–k) and Eobransamys sp. (figure 2a–d) were small rat-sized (see the electronic supplementary material). Interestingly, this very small size distribution for the oldest known South American caviomorphs is comparable to that observed in Africa [11] for the earliest known radiation of the sister group: the phiomorphs [2,3,5,8,11]. In addition, the moderate morphological disparity among CTA-27 rodents suggests a short interval of caviomorph evolutionary history in South America prior to the Contamana record (figure 3a). Cachiyacuy, Canaanimys and cf. Eoespina share a similar dental bauplan with the earliest Afro-Asian histriocognaths (phiomyids [11] and baluchimyines [8]; latest Middle Eocene–Early Oligocene in age; figure 3a), including brachydonty, bunolophodonty, upper molar pentalophodonty [8], low crest obliquity and multi-serial subtype one to two incisor enamel microstructure [34].

This is exemplified by the striking dental resemblances between Canaanimys, Cachiyacuy and their Old World counterparts, such as Protophiomyx and Baluchimys (for Canaanimys) and Phiomys and Metaphiomyx (for Cachiyacuy; figure 3a). CTA-27 thus probably documents the earliest stages of caviomorph evolution (i.e. their first adaptive radiation in South America). However, the dental pattern of Cachiyacuy is somewhat paradoxical as it appears quite primitive in showing a metaloph configuration that is unique among caviomorphs (otherwise found only in basal phiomyids and baluchimyines), but also quite specialized in having taeniodont upper molars, as in advanced cavioid caviomorphs (figure 2t–v). Some
Figure 2. Scanning electron microscope images (in occlusal view) and dimensions (length × width, in millimetres) of fossil caviomorph teeth from CTA-27. (a–k) Cachiyacuy contamanensis new gen. and sp.: (a) MUSM 1870, right (r) M3 (2.34 × 2.44); (b) MUSM 1871, r M4 (holotype; 2.22 × 2.69); (c) MUSM 1872, left (l) M4 (reversed; 2.07 × 2.22); (d) MUSM 1873, r P4 (1.82 × 2.38); (e) MUSM 1874, l DP4 (reversed; 2.03 × 1.98); (f) MUSM 1875, DP3 (0.77 × 0.82); (g) MUSM 1876, r M3 (2.46 × 2.24); (h) MUSM 1877, r M2 (2.44 × 2.36); (i) MUSM 1878, r M1 (2.15 × 1.99); (j) MUSM 1879, r P4 (1.99 × 2.0); (k) MUSM 1880, r DP4 (2.31 × 1.53). (l–s) Cachiyacuy kummeli new gen. and sp.: (l) MUSM 1881, broken r P4 (reversed; 1.16 × –); (m) MUSM 1882, l M1 (holotype; 1.45 × 1.63); (n) MUSM 1883, l M2 (1.69 × 1.87); (o) MUSM 1884, l M1 (1.67 × 1.71); (p) MUSM 1885, r M1 (1.6 × 1.47); (q) MUSM 1886, r M2 (1.83 × 1.67); (r) MUSM 1887, r M1 (1.59 × 1.54); (s) MUSM 1888, l DP4 (reversed; 1.53 × 1.2). (t–z) Canaanimus maquiensis new gen. and sp.: (t) MUSM 1889, r M3 (1.5 × 1.87); (u) MUSM 1890, r M2 (holotype; 1.63 × 1.95); (v) MUSM 1891, l M1 (reversed; 1.46 × 1.82); (w) MUSM 1892, l M3 (1.71 × 1.36); (x) MUSM 1893, l M2 (reversed; 1.8 × 1.79); (y) MUSM 1894, l M1 (reversed; 1.54 × 1.57); (z) MUSM 1895, broken r DP4 (– × 1.07). (a′–d′) Eobranisamys sp.: (a′) MUSM 1896, l P4 (1.86 × 2.33); (b′) MUSM 1897, l M1 (2.39 × 2.49); (c′) MUSM 1898, broken r M2 (– × 2.23); (d′) MUSM 1899, l M3 (2.47 × 2.06). (e′,f′) cf. Eoespina sp.: (e′) MUSM 1912, r M2 (1.48 × 1.85); (f′) MUSM 1913, l M2 (1.51 × 1.77).
subsequent Palaeogene caviomorph caviomorphs (such as *Eoincamys* and *Incamys*) exhibit a highly specialized dental pattern, noticeably reminiscent of *Eoincamys* and subsequent Palaeogene caviomorphs (such as the current analysis (figure 3a)) is interpreted as a stem octodontoid. These comparable dental patterns, highly specialized for Palaeogene rodents, are likely to reflect adaptive convergence rather than close phylogenetic affinities [14].

The dramatic global cooling and drying episode recorded around the Eocene–Oligocene transition (approx. 34 Ma; opening of Drake Passage and development of Antarctic ice sheet [30,35]) are usually regarded as having shaped major faunal changes in South America, including the arrival of caviomorphs [19,36]. The presence of caviomorph rodents in approximately 41-Ma-old sediments of Peruvian Amazonia shows that both their dispersal and initial radiation occurred instead during a much warmer and wetter period, around the Mid-Eocene Climatic Optimum [30,37] (figures 1 and 3a), which is consistent with the associated palynoflora (see electronic supplementary material, table S3). Such a view strongly supports the Middle Eocene caviomorph/phiomorph split.
that middle- and high-latitude areas were extensively
primates much before. Expected that other regions of South America hosted
and that of primates (Late Oligocene of Bolivia, approx.
poral gap between South America’s first appearance
tinct dispersal events from Africa for both groups, as
proposed for stem anthropoid primates [38, 39]. By
South American caviomorphs (figure 3
anthropoids (of Asian origin [39]) and the earliest
period records both the earliest African catarrhines/stem
dissent with trans-Atlantic sweeps dispersal of
hystriognaths from Africa to South America [2,10].

An Asian origin for stem Hystriognathi and stem
anthropoid primates has gained strong support in recent
years [8,11,38,39]. Based on our phylogeny (figure
3a,b), stem hystriognathous rodents probably invaded
Africa from Asia around the Early–Middle Eocene
transition. However, at that time and/or by the time of the
estimated CPS [9,15], only zhedduimyid anomalaurids are
known from Africa, which are phylogenetically
remote from the clade Hystriognathi [40]. The latter
are not recorded in Africa before the latest Middle
Eocene [8,11,41]. Similar timing and dispersal scenarios
are proposed for stem anthropoid primates [38,39]. By
contrast, the present discovery further extends the tem-
poral gap between South America’s first appearance
datum of rodents (now greater than or equal to 41 Ma)
and that of primates (Late Oligocene of Bolivia, approx.
26 Ma [16]), thus suggesting the possibility of dis-
tinct dispersal events from Africa for both groups, as
hypothesized by molecular data [9].

Morphological and molecular evidence [17,18] pre-
antly provide no definitive answer as to whether platyrhynes underwent a radiation before Late Oligocene
times, but the platyrhynce/catarrhine divergence is esti-
mated to have occurred around the Middle–Late
Eocene transition on molecular grounds [9]. This
period records both the earliest African catarrhines/stem
anthropoids (of Asian origin [39]) and the earliest
South American caviomorphs (figure 3a). Africa may
have played the role of a stopover for pioneer platyrhynes,
within a ‘land-mass-hopping’ process between Asia and
South America, as for caviomorphs several million years
earlier (figure 3). Once again, it is not clear whether pla-
trhynes and caviomorphs diverged in Asia or in Africa
[39]. However, in the Old World, most Middle
Eocene–Early Oligocene localities with hystriognaths
also yield primates [8,11,14,39,41], a situation that
strongly contrasts with the coeval South American fossil
record. Moreover, based on palynological data [33,37]
and current palaeoenvironmental reconstructions [42],
low-latitude areas of South America were seemingly
highly favourable to the survival and expansion of platyr-
hyne primates throughout Palaeogene times. The
Palaeeogean platyrhynce record in South America is so
far restricted to the Late Oligocene deposits of the
Salla-Luribay area in Bolivia [16,17], but it can be
expected that other regions of South America hosted
primates much before.

According to South America’s fossil record, and given
that middle- and high-latitude areas were extensively
investigated in the last centuries [1,36] (i.e. much more
than low-latitude regions, including western Amazonia
[20]), the earliest caviomorphs seemingly expanded
southward during the late Middle Eocene–Early Oligo-
cene period, from low (Peruvian Amazonia; approx.
41 Ma or earlier) to middle (central Chile; approx.
32 Ma [5,19]) and then to high latitudes (Patagonian
Argentina; approx. 30 Ma [13]). Such a southward
shift, fully contradictory to the apparent northward
expansion as deduced from the fossil record available 20
years ago, highlights the critical dependence of deep
time dispersal scenarios on the fossil record, and shows
how severely under-sampled the tropics are.

We thank the IRD-PeruPetro Convention Programme, the
Canaan Shipibo Native Community and Maple Gas Peru
S.A. for access to the field, J.-L. Hartenberger, F. Delsuc,
M. Steiper and O. Bertrand for fruitful discussion, P. Baby,
M. Roddaz, C. Gautheron, Y. Calderón and L. Quiroz for
help with fieldwork, F. Leite and D. Carvajal for their work
on pollen, and C. Cazevieille (Centre de Ressources en
Imagerie Cellulaire, Montpellier) for access to a scanning
electron microscope facility. We are much indebted to
R. Cifelli for having edited this article, as well as to C.
De Mauzon and E. F. Seiffert for their constructive remarks
on an earlier version of the manuscript. P.-O.A. was supported by
CNRS ‘Eclipse 2’, CNRS ‘Paleo2’ and Toulouse University ‘SPAM’;
L.M. and M.J.O. were supported by
ANR-08-JCJC-0017 (PALASIAFRICA); G.B. and T.M.
were supported by Alexander von Humboldt-Foundation,

REFERENCES
1 Wood, A. E. & Patterson, B. 1959 The rodents of the
Desadean Oligocene of Patagonia and the beginnings
Zool. 120, 281–428.
2 Hoffstetter, R. 1972 Origine et dispersion des Rongeurs
2870.
3 Lavocat, R. 1976 Rongeurs Caviomorphes de l’Oligocène
de Bolivie: II Rongeurs du bassin Désaédien de Salla-
Luribay. Palaeovertebrata 7, 15–90.
4 Patterson, B. & Wood, A. E. 1982 Rodents from the
Desadean Oligocene of Bolivia and the relationship of
5 Wyss, A. R., Flynn, J. J., Norell, M. A., Swisher II, C. C.,
Charrier, R., Novacek, M. J. & McKenna, M. C. 1993
South America’s earliest rodent and recognition of a
new interval of mammalian evolution. Nature 365,
434–437. (doi:10.1038/365434a0)
6 Houle, A. 1999 The origin of platyrhynes: an evaluation of
theantarctic scenario and the floating island model.
SIC1)1096-8644(199908)109:4
541::AID-APGA9
3.0.CO;2-N)
7 Huchon, D. & Douzery, P. 2001 From the Old World to
the New World: a molecular chronicle of the phylogeny
and biogeography of hystriognath rodents. Mol. Phylo-
8 Marivaux, L., Welcomme, J.-L., Vianey-Liaud, M.
& Jaeger, J. 2002 The role of Asia in the origin and diversi-
& Douzery, P. 2006 Arrival and diversification of cavi-
omorph rodents and platyrhynce primates in South
America. Syst. Biol. 55, 228–244. (doi:10.1080/
10635150500481390)
22 Kummel, B. 1948 Geological reconnaissance of Conta-

23 Proc. R. Soc. B

24 Kummel, B. 1948 Geological reconnaissance of Conta-

25 Legendre, S. 1986 Analysis of mammalian communities

26 Coster, P. 2010 Gaudeamus lavocati sp. nov. (Rodent-

29 López, G. M. 2010 Divisaderan: land mammal age or

