First tooth-set outside the jaws in a vertebrate

John A. Finarelli1,* and Michael I. Coates1,2

1Department of Organismal Biology and Anatomy, and 2Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA

Holocephalans (ratfish, rabbitfish and chimaeras) figure with increasing prominence in studies of gnathostome evolutionary biology. Here, we provide the first complete description of the teeth and toothplates of one of the earliest known holocephalans, *Chondrenchelys problematica*, including the first unambiguous evidence of a gnathostome with an extra-mandibular dentition. We further demonstrate that holocephalan toothplate ontogeny differs fundamentally from all other extant gnathostome examples, and show how the conjunction of these teeth and toothplates challenges the monophyly of an extinct chondrichthyan clade, the Petalodontiformes. *Chondrenchelys* provides a novel perspective on the evolution of dentitions in shark-like fishes, expands the known repertoire of gnathostome dental morphologies and offers a glimpse of radically new chondrichthyan ecomorphs, now lost from the modern biota, following the end-Devonian extinctions.

Keywords: Chondrichthyes; Holocephali; extra-mandibular teeth; Palaeozoic

1. INTRODUCTION

Living chimaeroids are the remnants of a major Palaeozoic radiation of cartilaginous fishes. As such, they represent a significant component of extant gnathostome diversity and, in terms of their morphological and genomic heritage, provide unique insights into conditions among early vertebrates [1,2]. Genome sequencing of the elephant shark (*Callorhinus milii*) [3] has raised interest in holocephalans as a model system in comparative evolutionary biology, evolutionary developmental biology and genomics [4–6]. Extant holocephalans are characterized by a distinctive suite of anatomical specializations [7–10]; however, we have little appreciation of the deep evolutionary history of this clade and its diagnostic features.

Most Palaeozoic holocephalans are known only from isolated teeth [9], and the few known body fossils present strikingly different ecomorphs compared with those observed today [7,11,12]. In practice, the parallel, and often independent, treatments of data drawn from the abundant record of isolated teeth, on the one hand [13], and the more rarely preserved articulated skeletal remains, on the other [14,15], present a persistent problem in the study of early vertebrate diversity. Here, we describe the dentition of the Lower Carboniferous (Visean) holocephalan *Chondrenchelys problematica* (Traquair [16]; figure 1), using new and previously unrecognized specimens. We provide (i) the first description of a complete arcade of extra-mandibular teeth, (ii) a new description of holocephalan toothplate ontogeny, and (iii) the conjunction, within a single species, of characteristic holocephalan toothplates with individual, petalodont-like teeth. These novel features have important implications for the evolution of disparity in modern gnathostome dentitions, interpretations of the patterns of early fossil vertebrate diversity from records of isolated teeth and the range of ecomorphs among early chondrichthysans.

*Chondrenchelys problematica*, from Glencartholm, Scotland [17], was first described in detail by Moy-Thomas [11]. Lund [12] amended its description while describing a slightly younger (Serpukhovian) taxon, *Harpagofututor voellii* from the Bear Gulch Limestone of Montana, USA. Lund [12] allied *Chondrenchelys* and *Harpagofututor* in the family Chondrenchelyidae based on general similarities of their eel-like body plans, specialized pectoral fins and toothplate morphologies.

2. MATERIAL AND METHODS

The new Mumbie Quarry specimens, NMS 1998.35.1 and NMS 2002.68.1, are more complete than previously described examples, and benefit from more precise preparation and consolidation. NMS 1998.35.1 is a single slab containing an unusually intact individual with the upper and lower dentitions preserved in occlusion. NMS 2002.68.1 is preserved as a part and counterpart. The specimen is split through the oral cavity, such that both the mandibular and palatal dentitions are preserved in oral view. The previously misidentified specimen, HM V7173 (see the electronic supplementary material), is a single slab preserving an unusually intact individual with the upper and lower dentitions preserved in occlusion. NMS 2002.68.1 is preserved as a part and counterpart. The specimen is split through the oral cavity, such that both the mandibular and palatal dentitions are preserved in oral view. The previously misidentified specimen, HM V7173 (see the electronic supplementary material), is a single slab preserving an unusually intact individual with the upper and lower dentitions preserved in occlusion and damaged anterior toothplates, displaced rostrally. New data preserved in these specimens motivated a re-evaluation of the dentitions in previously described *Chondrenchelys* specimens (including NHM P 4085 and RSM 1885.54.5), part of Moy-Thomas’s [11] original description, and referred specimens RMS 1891.53.33 and BGS-GSE 13328 [12].

The wealth of new information from these specimens facilitated the complete redescription of the dentition of *Chondrenchelys* (see the electronic supplementary material for complete description).
3. RESULTS

The new specimens demonstrate unambiguously the presence of an extra-mandibular dentition, consisting of individual teeth (figures 1b and 2; electronic supplementary material, figures S3–S5), with complete mandibular and palatal cartilages preserved, an unusual quality of preservation for Palaeozoic holocephalans. The outer surfaces of these extra-mandibular teeth have a pin-cushion appearance, reflecting vertically oriented, closely spaced tubules emerging onto the outermost dentine surface [9,13,18] (figure 2; electronic supplementary material, figure S4). The crowns are labio-lingually compressed, and the tooth bases are deep and likewise labio-lingually thin (electronic supplementary material, figure S4). This combination of characters closely resembles that of taxa associated with the Petalodontiformes [9,13,18].

Each quadrant of both the mandibular and palatal dentitions consists of a large posterior toothplate and a single, smaller anterior toothplate (figure 3). Upper and lower posterior toothplates (UPT and LPT, respectively; electronic supplementary material) preserve complete developmental sequences and display distinct shifts in the orientation of tooth generation (figure 3). Transverse dentine bands in the anteriormost portion of the LPT and UPT, and the mineralized tritons within the anterior-most ridge, show that the oldest part of each toothplate was generated linguo-labially as in Helodus and chochliodonts [8,9,19] (electronic supplementary material, figure S2). In the posterior (younger) portion of each toothplate (figure 3), the dentine bands are reoriented, such that they pass transversely across the toothplate.

Figure 1. Comparison of mandibular dentitions for (a) chimaeroid, rabbitfish (Hydrolagus colliei); (b) Chondrenchelys problematica; and (c) general elasmobranch lyodont condition.

Figure 2. (a,b) Anterior dentition of NMS 1998.35.1: (a) photo and (b) interpretive drawing. Anterior to the left in both. LPT, lower posterior toothplate; LAT, lower anterior toothplate; UPT, upper posterior toothplate; UAT, upper anterior toothplate; E-MT, extra-mandibular teeth. (c,d) Detail of extra-mandibular teeth in NMS 1998.35.1 showing dimpled surface and saddle-shaped crowns. (c) Photo and (d) interpretive drawing. Anterior to the left and lingual to the bottom in both. key.r., keyhole-shaped recess on lingual surface.
condition of elasmobranchs (figure 1c). Lyodont (‘loose tooth’) dentitions are characterized by individual, unrooted teeth, generated in a dental lamina that is set in a trough along the lingual margin of the jaw cartilage [22]. Later teeth sequentially replace earlier ones at each tooth generation site, or family, with replacement proceeding linguo-labially [19,22], more or less perpendicular to the tangent of the tooth row. This pattern has been proposed for Palaeozoic holocephalans, of which the scrolled toothplates of cochliodonts (electronic supplementary material, figure S2) are the most striking examples [8,19].

In modern chimaeroids, tooth replacement is described as proceeding in a caudal-to-rostral direction [26]. Individual tooth units are thought to traverse the jaw cartilage margins, with earlier generations abraded and replaced anteriorly [19,26]. Consequently, it appears that tooth replacement has been reoriented in holocephalans, from a primordially radial to a modern caudal–rostral direction [9,19] (compare figure 1a,c). The Carboniferous holocephalan Helodus simplex possesses distinct families of mostly separate teeth, successively replacing one another linguo-labially, as in extant sharks. But it also possesses tooth families that are fused into incipient toothplates (compare electronic supplementary material, figure S2a with figure 1c). As such, Helodus has been presented as a transitional form between the presumed ancestral and derived conditions [8,18].

The new data on Chondrenchelys tooth plate ontogeny call this long-accepted scenario into question. The orientations of the transverse dentine bands and mineralized tri.ors in the posterior toothplates show that the direction of toothplate growth was reoriented during life. In Chondrenchelys, the older (anterior) portion of the posterior toothplates is generated radially with transverse bands oriented similarly to modern elasmobranch teeth, whereas the younger (caudal) portion matches modern chimaeroids, with transverse bands oriented in coronal section, thus perpendicular to an antero-posterior direction of tooth generation (figure 3a; electronic supplementary material, figure S3). Thus, within any posterior toothplate, the conjectured primitive and derived conditions are observable. Radial replacement is probably plesiomorphic for Chondrichthyes [1,22], but invoking a straightforward transformation from unfused, radially replacing teeth to caudal-to-rostrally replacing toothplates is insufficient.

Gross toothplate morphology in Mesozoic and Cenozoic holocephalans is essentially identical to Chondrenchelys (compare figure 3a with electronic supplementary material, figure S2c). Within the LPT of Chondrichthyes, three reinforced tritural ridges are arranged in what appear to be tooth family whorls (figure 3a; electronic supplementary material, figure S3). The anteriormost ridge is oriented labio-lingually, and obliquely to the more posterior ridges, which fan out in an increasingly parasagittal array. This is similar to more recent holocephalans, such as the Mesozoic Myriacanthidae and the extant families Callorhynchidae and Rhinichimaeridae [8,9]. However, these ridge patterns are unlike those observed in the classic Palaeozoic holocephalan groups, such as Chochliodontidae, Psammodontidae or Helodontidae [8,9], in which whorl orientations are strictly radial (compare electronic supplementary material, figure S2ab with electronic supplementary material, figure S2c and figure 3a).
If elasmobranchs exemplify the primitive condition, then the lyodont model would imply net movement of individual teeth relative to the jaw cartilage [19,26]. In *Chondrenchelys*, the anterior-most portion of the posterior toothplates remain in position throughout life (figure 3a,b). This demonstrates that the posterior toothplates grew by means of accretion of later tooth generations at the caudal toothplate margin. There is no net movement of individual teeth relative to the jaw cartilage. Further evidence for this is provided in the mandibular cartilage flooring the LPT, where a periodic structure coinciding with the transverse dentine bands is observed (electronic supplementary material, figure S3). We interpret this as coordinated, episodic growth between the mandible and LPT. Intriguingly, toothplate growth via accretion resembles patterns observed in several evolutionarily remote clades (e.g. dipnoan sarcopterygians [27,28] and arthrodire placoderms [29]). Caudal accretion further emphasizes the fundamental dissimilarity between the dentitions of *Chondrenchelys* and conventional sharks [22,29].

The extra-mandibular dentition displays characters that resemble teeth normally ascribed to the Petalodontiformes [9,13,18]. Petalodonts are an enigmatic group of Palaeozoic chondrichthyans of uncertain phylogenetic affinity [13,15,18,30] (electronic supplementary material, figure S1). In particular, we note that the extra-mandibular teeth are strikingly similar to the teeth of *Heteropetalus* and *Debeireus* (electronic supplementary material, figure S6), both of which have been allied with or included within the Petalodontiformes [13,31]. The similarities raise important questions about the coherence of the Petalodontiformes and the characters that define petalodont teeth, and more generally about the diagnostic value of isolated teeth in the early vertebrate fossil record. The conjunction of two morphologies that were previously thought to be disjunct serves as a cautionary example for erecting classifications and phylogenies based solely on dental character data [13,32]. ‘Tooth-taxa’ and dental character phylogenies are not new to paleontology; teeth are the most easily fossilized elements of many vertebrate skeletons, including chondrichthyans. Several studies in mammalian palaeobiology have pointed to elevated rates of homoplasies and incongruent phylogenetic results when considering dental characters in isolation from other data partitions [33,34]. Given the observation of petalodont-like teeth in this otherwise decidedly holocelhalan mouth, petalodonts probably constitute a range of tooth forms, some of which are present among the dentitions of a variety of early chondrichthyans.

As a result, it is possible that the Petalodontiformes is not monophyletic, and we predict that an increasing number of species will be removed from it as additional body fossils with more or less ‘petalodont’ dentitions emerge in the Palaeozoic chondrichthyan record. *Chondrenchelys* raises new questions about the evolution of jawed vertebrate dentitions in the wake of the end-Devonian extinction [35]. Furthermore, it reveals experimentation with ecomorphologies that are never again observed in the Holocelhalan. Dental and histological character data are important, but early vertebrate phylogeny cannot be successfully resolved using these materials alone. The importance of tooth, scale and histological data can only be fully appreciated when understood in context with more inclusive sets of character data, hence the importance of fossils such as *Chondrenchelys*.

For access to specimens we thank: the British Geological Survey of Edinburgh, J. Liston, N. Clark, C. Beard, A. Henrici, R. Paton and S. Walsh. We acknowledge S. P. Wood for discovery and primary preparation of the Mumbie Quarry specimens and academic collaboration. We thank L. C. Sallan for identification of the Hunterian Museum specimen and B. Masek for painstaking preparation of the new specimens. This project was supported by National Science Foundation grant DEB-0917922.

REFERENCES

1 Brazeau, M. D. 2009 The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. *Nature* 457, 305–308. (doi:10.1038/nature07436)


Extra-mandibular holocephalan teeth

J. A. Finarelli & M. I. Coates


16 Traquair, R. H. 1888 Further notes on Carboniferous Selachii. Geol. Mag. 5, 101–104. (doi:10.1017/S0016756800173467)


